(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

and(tt, T) → T
isNatIList(IL) → isNatList(activate(IL))
isNat(n__0) → tt
isNat(n__s(N)) → isNat(activate(N))
isNat(n__length(L)) → isNatList(activate(L))
isNatIList(n__zeros) → tt
isNatIList(n__cons(N, IL)) → and(isNat(activate(N)), isNatIList(activate(IL)))
isNatList(n__nil) → tt
isNatList(n__cons(N, L)) → and(isNat(activate(N)), isNatList(activate(L)))
isNatList(n__take(N, IL)) → and(isNat(activate(N)), isNatIList(activate(IL)))
zeroscons(0, n__zeros)
take(0, IL) → uTake1(isNatIList(IL))
uTake1(tt) → nil
take(s(M), cons(N, IL)) → uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL))
uTake2(tt, M, N, IL) → cons(activate(N), n__take(activate(M), activate(IL)))
length(cons(N, L)) → uLength(and(isNat(N), isNatList(activate(L))), activate(L))
uLength(tt, L) → s(length(activate(L)))
0n__0
s(X) → n__s(X)
length(X) → n__length(X)
zerosn__zeros
cons(X1, X2) → n__cons(X1, X2)
niln__nil
take(X1, X2) → n__take(X1, X2)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__length(X)) → length(X)
activate(n__zeros) → zeros
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

Q is empty.