(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
after(0, XS) → XS
after(s(N), cons(X, XS)) → after(N, activate(XS))
from(X) → n__from(X)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AFTER(s(N), cons(X, XS)) → AFTER(N, activate(XS))
AFTER(s(N), cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__from(X)) → FROM(X)
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
after(0, XS) → XS
after(s(N), cons(X, XS)) → after(N, activate(XS))
from(X) → n__from(X)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AFTER(s(N), cons(X, XS)) → AFTER(N, activate(XS))
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
after(0, XS) → XS
after(s(N), cons(X, XS)) → after(N, activate(XS))
from(X) → n__from(X)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
AFTER(s(N), cons(X, XS)) → AFTER(N, activate(XS))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTER(
x1,
x2) =
AFTER(
x1)
s(
x1) =
s(
x1)
cons(
x1,
x2) =
cons
activate(
x1) =
x1
from(
x1) =
from
n__from(
x1) =
n__from
Lexicographic Path Order [LPO].
Precedence:
s1 > [AFTER1, cons, from, nfrom]
The following usable rules [FROCOS05] were oriented:
none
(6) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
after(0, XS) → XS
after(s(N), cons(X, XS)) → after(N, activate(XS))
from(X) → n__from(X)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(8) TRUE