(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
after(0, XS) → XS
after(s(N), cons(X, XS)) → after(N, activate(XS))
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTER(s(N), cons(X, XS)) → AFTER(N, activate(XS))
AFTER(s(N), cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__from(X)) → FROM(activate(X))
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__s(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
after(0, XS) → XS
after(s(N), cons(X, XS)) → after(N, activate(XS))
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 3 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__from(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
after(0, XS) → XS
after(s(N), cons(X, XS)) → after(N, activate(XS))
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__from(X)) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVATE(x1)  =  ACTIVATE(x1)
n__s(x1)  =  x1
n__from(x1)  =  n__from(x1)
from(x1)  =  from(x1)
cons(x1, x2)  =  x2
after(x1, x2)  =  after(x2)
0  =  0
s(x1)  =  x1
activate(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[ACTIVATE1, nfrom1, from1]

Status:
ACTIVATE1: multiset
nfrom1: multiset
from1: multiset
after1: multiset
0: multiset


The following usable rules [FROCOS05] were oriented:

from(X) → cons(X, n__from(n__s(X)))
after(0, XS) → XS
after(s(N), cons(X, XS)) → after(N, activate(XS))
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__s(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
after(0, XS) → XS
after(s(N), cons(X, XS)) → after(N, activate(XS))
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__s(X)) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVATE(x1)  =  ACTIVATE(x1)
n__s(x1)  =  n__s(x1)
from(x1)  =  from
cons(x1, x2)  =  x2
n__from(x1)  =  n__from
after(x1, x2)  =  after(x2)
0  =  0
s(x1)  =  s(x1)
activate(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[from, nfrom] > [ns1, s1]

Status:
ACTIVATE1: multiset
ns1: [1]
from: multiset
nfrom: multiset
after1: multiset
0: multiset
s1: [1]


The following usable rules [FROCOS05] were oriented:

from(X) → cons(X, n__from(n__s(X)))
after(0, XS) → XS
after(s(N), cons(X, XS)) → after(N, activate(XS))
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
after(0, XS) → XS
after(s(N), cons(X, XS)) → after(N, activate(XS))
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTER(s(N), cons(X, XS)) → AFTER(N, activate(XS))

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
after(0, XS) → XS
after(s(N), cons(X, XS)) → after(N, activate(XS))
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTER(s(N), cons(X, XS)) → AFTER(N, activate(XS))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTER(x1, x2)  =  AFTER(x1, x2)
s(x1)  =  s(x1)
cons(x1, x2)  =  x2
activate(x1)  =  x1
from(x1)  =  from
n__from(x1)  =  n__from
n__s(x1)  =  n__s(x1)
after(x1, x2)  =  after(x1, x2)
0  =  0

Recursive path order with status [RPO].
Quasi-Precedence:
[AFTER2, s1, ns1] > after2
[from, nfrom] > after2
0 > after2

Status:
AFTER2: multiset
s1: multiset
from: multiset
nfrom: multiset
ns1: multiset
after2: multiset
0: multiset


The following usable rules [FROCOS05] were oriented:

from(X) → cons(X, n__from(n__s(X)))
after(0, XS) → XS
after(s(N), cons(X, XS)) → after(N, activate(XS))
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
after(0, XS) → XS
after(s(N), cons(X, XS)) → after(N, activate(XS))
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE