(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(from(X)) → CONS(X, from(s(X)))
ACTIVE(from(X)) → FROM(s(X))
ACTIVE(from(X)) → S(X)
ACTIVE(sel(0, cons(X, XS))) → MARK(X)
ACTIVE(sel(s(N), cons(X, XS))) → MARK(sel(N, XS))
ACTIVE(sel(s(N), cons(X, XS))) → SEL(N, XS)
ACTIVE(minus(X, 0)) → MARK(0)
ACTIVE(minus(s(X), s(Y))) → MARK(minus(X, Y))
ACTIVE(minus(s(X), s(Y))) → MINUS(X, Y)
ACTIVE(quot(0, s(Y))) → MARK(0)
ACTIVE(quot(s(X), s(Y))) → MARK(s(quot(minus(X, Y), s(Y))))
ACTIVE(quot(s(X), s(Y))) → S(quot(minus(X, Y), s(Y)))
ACTIVE(quot(s(X), s(Y))) → QUOT(minus(X, Y), s(Y))
ACTIVE(quot(s(X), s(Y))) → MINUS(X, Y)
ACTIVE(zWquot(XS, nil)) → MARK(nil)
ACTIVE(zWquot(nil, XS)) → MARK(nil)
ACTIVE(zWquot(cons(X, XS), cons(Y, YS))) → MARK(cons(quot(X, Y), zWquot(XS, YS)))
ACTIVE(zWquot(cons(X, XS), cons(Y, YS))) → CONS(quot(X, Y), zWquot(XS, YS))
ACTIVE(zWquot(cons(X, XS), cons(Y, YS))) → QUOT(X, Y)
ACTIVE(zWquot(cons(X, XS), cons(Y, YS))) → ZWQUOT(XS, YS)
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(from(X)) → FROM(mark(X))
MARK(from(X)) → MARK(X)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
MARK(sel(X1, X2)) → SEL(mark(X1), mark(X2))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(X1, X2)) → MARK(X2)
MARK(0) → ACTIVE(0)
MARK(minus(X1, X2)) → ACTIVE(minus(mark(X1), mark(X2)))
MARK(minus(X1, X2)) → MINUS(mark(X1), mark(X2))
MARK(minus(X1, X2)) → MARK(X1)
MARK(minus(X1, X2)) → MARK(X2)
MARK(quot(X1, X2)) → ACTIVE(quot(mark(X1), mark(X2)))
MARK(quot(X1, X2)) → QUOT(mark(X1), mark(X2))
MARK(quot(X1, X2)) → MARK(X1)
MARK(quot(X1, X2)) → MARK(X2)
MARK(zWquot(X1, X2)) → ACTIVE(zWquot(mark(X1), mark(X2)))
MARK(zWquot(X1, X2)) → ZWQUOT(mark(X1), mark(X2))
MARK(zWquot(X1, X2)) → MARK(X1)
MARK(zWquot(X1, X2)) → MARK(X2)
MARK(nil) → ACTIVE(nil)
FROM(mark(X)) → FROM(X)
FROM(active(X)) → FROM(X)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
S(mark(X)) → S(X)
S(active(X)) → S(X)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)
SEL(X1, active(X2)) → SEL(X1, X2)
MINUS(mark(X1), X2) → MINUS(X1, X2)
MINUS(X1, mark(X2)) → MINUS(X1, X2)
MINUS(active(X1), X2) → MINUS(X1, X2)
MINUS(X1, active(X2)) → MINUS(X1, X2)
QUOT(mark(X1), X2) → QUOT(X1, X2)
QUOT(X1, mark(X2)) → QUOT(X1, X2)
QUOT(active(X1), X2) → QUOT(X1, X2)
QUOT(X1, active(X2)) → QUOT(X1, X2)
ZWQUOT(mark(X1), X2) → ZWQUOT(X1, X2)
ZWQUOT(X1, mark(X2)) → ZWQUOT(X1, X2)
ZWQUOT(active(X1), X2) → ZWQUOT(X1, X2)
ZWQUOT(X1, active(X2)) → ZWQUOT(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 8 SCCs with 24 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ZWQUOT(X1, mark(X2)) → ZWQUOT(X1, X2)
ZWQUOT(mark(X1), X2) → ZWQUOT(X1, X2)
ZWQUOT(active(X1), X2) → ZWQUOT(X1, X2)
ZWQUOT(X1, active(X2)) → ZWQUOT(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ZWQUOT(X1, mark(X2)) → ZWQUOT(X1, X2)
ZWQUOT(X1, active(X2)) → ZWQUOT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ZWQUOT(x1, x2)  =  ZWQUOT(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[ZWQUOT1, active1]

Status:
ZWQUOT1: [1]
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ZWQUOT(mark(X1), X2) → ZWQUOT(X1, X2)
ZWQUOT(active(X1), X2) → ZWQUOT(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ZWQUOT(mark(X1), X2) → ZWQUOT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ZWQUOT(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ZWQUOT(active(X1), X2) → ZWQUOT(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ZWQUOT(active(X1), X2) → ZWQUOT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ZWQUOT(x1, x2)  =  x1
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(11) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOT(X1, mark(X2)) → QUOT(X1, X2)
QUOT(mark(X1), X2) → QUOT(X1, X2)
QUOT(active(X1), X2) → QUOT(X1, X2)
QUOT(X1, active(X2)) → QUOT(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


QUOT(X1, mark(X2)) → QUOT(X1, X2)
QUOT(X1, active(X2)) → QUOT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
QUOT(x1, x2)  =  QUOT(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[QUOT1, active1]

Status:
QUOT1: [1]
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOT(mark(X1), X2) → QUOT(X1, X2)
QUOT(active(X1), X2) → QUOT(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


QUOT(mark(X1), X2) → QUOT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
QUOT(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOT(active(X1), X2) → QUOT(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


QUOT(active(X1), X2) → QUOT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
QUOT(x1, x2)  =  x1
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(20) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(22) TRUE

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(X1, mark(X2)) → MINUS(X1, X2)
MINUS(mark(X1), X2) → MINUS(X1, X2)
MINUS(active(X1), X2) → MINUS(X1, X2)
MINUS(X1, active(X2)) → MINUS(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MINUS(X1, mark(X2)) → MINUS(X1, X2)
MINUS(X1, active(X2)) → MINUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MINUS(x1, x2)  =  MINUS(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[MINUS1, active1]

Status:
MINUS1: [1]
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(mark(X1), X2) → MINUS(X1, X2)
MINUS(active(X1), X2) → MINUS(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MINUS(mark(X1), X2) → MINUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MINUS(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(active(X1), X2) → MINUS(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MINUS(active(X1), X2) → MINUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MINUS(x1, x2)  =  x1
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(29) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(31) TRUE

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)
SEL(X1, active(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(X1, active(X2)) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[SEL1, active1]

Status:
SEL1: [1]
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(mark(X1), X2) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(mark(X1), X2) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(active(X1), X2) → SEL(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(37) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(active(X1), X2) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  x1
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(38) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(40) TRUE

(41) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(42) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(active(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(43) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(44) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(45) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(46) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(47) TRUE

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[CONS1, active1]

Status:
CONS1: [1]
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(50) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(51) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(active(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(53) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(active(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  x1
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(54) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(55) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(56) TRUE

(57) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(active(X)) → FROM(X)
FROM(mark(X)) → FROM(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(58) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FROM(active(X)) → FROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
FROM(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(59) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(mark(X)) → FROM(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(60) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FROM(mark(X)) → FROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
FROM(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(61) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(62) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(63) TRUE

(64) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(from(X)) → MARK(X)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(sel(0, cons(X, XS))) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(sel(s(N), cons(X, XS))) → MARK(sel(N, XS))
MARK(s(X)) → MARK(X)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
ACTIVE(minus(s(X), s(Y))) → MARK(minus(X, Y))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(X1, X2)) → MARK(X2)
MARK(minus(X1, X2)) → ACTIVE(minus(mark(X1), mark(X2)))
ACTIVE(quot(s(X), s(Y))) → MARK(s(quot(minus(X, Y), s(Y))))
MARK(minus(X1, X2)) → MARK(X1)
MARK(minus(X1, X2)) → MARK(X2)
MARK(quot(X1, X2)) → ACTIVE(quot(mark(X1), mark(X2)))
ACTIVE(zWquot(cons(X, XS), cons(Y, YS))) → MARK(cons(quot(X, Y), zWquot(XS, YS)))
MARK(quot(X1, X2)) → MARK(X1)
MARK(quot(X1, X2)) → MARK(X2)
MARK(zWquot(X1, X2)) → ACTIVE(zWquot(mark(X1), mark(X2)))
MARK(zWquot(X1, X2)) → MARK(X1)
MARK(zWquot(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(65) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(s(X)) → ACTIVE(s(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK
from(x1)  =  from
ACTIVE(x1)  =  x1
mark(x1)  =  mark
cons(x1, x2)  =  cons
s(x1)  =  s
sel(x1, x2)  =  sel
0  =  0
minus(x1, x2)  =  minus
quot(x1, x2)  =  quot
zWquot(x1, x2)  =  zWquot
active(x1)  =  active(x1)
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
0 > mark > active1 > [MARK, from, cons, sel, minus, quot, zWquot] > s
nil > mark > active1 > [MARK, from, cons, sel, minus, quot, zWquot] > s

Status:
MARK: []
from: []
mark: []
cons: []
s: []
sel: []
0: []
minus: []
quot: []
zWquot: []
active1: [1]
nil: []


The following usable rules [FROCOS05] were oriented:

from(active(X)) → from(X)
from(mark(X)) → from(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

(66) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(from(X)) → MARK(X)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(sel(0, cons(X, XS))) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(sel(s(N), cons(X, XS))) → MARK(sel(N, XS))
MARK(s(X)) → MARK(X)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
ACTIVE(minus(s(X), s(Y))) → MARK(minus(X, Y))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(X1, X2)) → MARK(X2)
MARK(minus(X1, X2)) → ACTIVE(minus(mark(X1), mark(X2)))
ACTIVE(quot(s(X), s(Y))) → MARK(s(quot(minus(X, Y), s(Y))))
MARK(minus(X1, X2)) → MARK(X1)
MARK(minus(X1, X2)) → MARK(X2)
MARK(quot(X1, X2)) → ACTIVE(quot(mark(X1), mark(X2)))
ACTIVE(zWquot(cons(X, XS), cons(Y, YS))) → MARK(cons(quot(X, Y), zWquot(XS, YS)))
MARK(quot(X1, X2)) → MARK(X1)
MARK(quot(X1, X2)) → MARK(X2)
MARK(zWquot(X1, X2)) → ACTIVE(zWquot(mark(X1), mark(X2)))
MARK(zWquot(X1, X2)) → MARK(X1)
MARK(zWquot(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(67) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK
from(x1)  =  from
ACTIVE(x1)  =  x1
mark(x1)  =  mark(x1)
cons(x1, x2)  =  cons
s(x1)  =  s(x1)
sel(x1, x2)  =  sel
0  =  0
minus(x1, x2)  =  minus
quot(x1, x2)  =  quot
zWquot(x1, x2)  =  zWquot
active(x1)  =  x1
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
0 > [MARK, from, sel, minus, quot, zWquot] > cons > mark1
0 > [MARK, from, sel, minus, quot, zWquot] > s1 > mark1
nil > mark1

Status:
MARK: []
from: []
mark1: [1]
cons: []
s1: [1]
sel: []
0: []
minus: []
quot: []
zWquot: []
nil: []


The following usable rules [FROCOS05] were oriented:

from(active(X)) → from(X)
from(mark(X)) → from(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(from(X)) → MARK(X)
ACTIVE(sel(0, cons(X, XS))) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(sel(s(N), cons(X, XS))) → MARK(sel(N, XS))
MARK(s(X)) → MARK(X)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
ACTIVE(minus(s(X), s(Y))) → MARK(minus(X, Y))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(X1, X2)) → MARK(X2)
MARK(minus(X1, X2)) → ACTIVE(minus(mark(X1), mark(X2)))
ACTIVE(quot(s(X), s(Y))) → MARK(s(quot(minus(X, Y), s(Y))))
MARK(minus(X1, X2)) → MARK(X1)
MARK(minus(X1, X2)) → MARK(X2)
MARK(quot(X1, X2)) → ACTIVE(quot(mark(X1), mark(X2)))
ACTIVE(zWquot(cons(X, XS), cons(Y, YS))) → MARK(cons(quot(X, Y), zWquot(XS, YS)))
MARK(quot(X1, X2)) → MARK(X1)
MARK(quot(X1, X2)) → MARK(X2)
MARK(zWquot(X1, X2)) → ACTIVE(zWquot(mark(X1), mark(X2)))
MARK(zWquot(X1, X2)) → MARK(X1)
MARK(zWquot(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(minus(X1, X2)) → active(minus(mark(X1), mark(X2)))
mark(quot(X1, X2)) → active(quot(mark(X1), mark(X2)))
mark(zWquot(X1, X2)) → active(zWquot(mark(X1), mark(X2)))
mark(nil) → active(nil)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
minus(mark(X1), X2) → minus(X1, X2)
minus(X1, mark(X2)) → minus(X1, X2)
minus(active(X1), X2) → minus(X1, X2)
minus(X1, active(X2)) → minus(X1, X2)
quot(mark(X1), X2) → quot(X1, X2)
quot(X1, mark(X2)) → quot(X1, X2)
quot(active(X1), X2) → quot(X1, X2)
quot(X1, active(X2)) → quot(X1, X2)
zWquot(mark(X1), X2) → zWquot(X1, X2)
zWquot(X1, mark(X2)) → zWquot(X1, X2)
zWquot(active(X1), X2) → zWquot(X1, X2)
zWquot(X1, active(X2)) → zWquot(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.