(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(X)
activate(n__zWquot(X1, X2)) → zWquot(X1, X2)
activate(X) → X
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SEL(s(N), cons(X, XS)) → SEL(N, activate(XS))
SEL(s(N), cons(X, XS)) → ACTIVATE(XS)
MINUS(s(X), s(Y)) → MINUS(X, Y)
QUOT(s(X), s(Y)) → QUOT(minus(X, Y), s(Y))
QUOT(s(X), s(Y)) → MINUS(X, Y)
ZWQUOT(cons(X, XS), cons(Y, YS)) → QUOT(X, Y)
ZWQUOT(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ZWQUOT(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__zWquot(X1, X2)) → ZWQUOT(X1, X2)
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(X)
activate(n__zWquot(X1, X2)) → zWquot(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 4 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(s(X), s(Y)) → MINUS(X, Y)
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(X)
activate(n__zWquot(X1, X2)) → zWquot(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOT(s(X), s(Y)) → QUOT(minus(X, Y), s(Y))
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(X)
activate(n__zWquot(X1, X2)) → zWquot(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ZWQUOT(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ACTIVATE(n__zWquot(X1, X2)) → ZWQUOT(X1, X2)
ZWQUOT(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(X)
activate(n__zWquot(X1, X2)) → zWquot(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SEL(s(N), cons(X, XS)) → SEL(N, activate(XS))
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(X)
activate(n__zWquot(X1, X2)) → zWquot(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.