(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(s(N), cons(X, XS)) → SEL(N, activate(XS))
SEL(s(N), cons(X, XS)) → ACTIVATE(XS)
MINUS(s(X), s(Y)) → MINUS(X, Y)
QUOT(s(X), s(Y)) → S(quot(minus(X, Y), s(Y)))
QUOT(s(X), s(Y)) → QUOT(minus(X, Y), s(Y))
QUOT(s(X), s(Y)) → MINUS(X, Y)
ZWQUOT(cons(X, XS), cons(Y, YS)) → QUOT(X, Y)
ZWQUOT(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ZWQUOT(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)
ACTIVATE(n__from(X)) → FROM(activate(X))
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__zWquot(X1, X2)) → ZWQUOT(activate(X1), activate(X2))
ACTIVATE(n__zWquot(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__zWquot(X1, X2)) → ACTIVATE(X2)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 6 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(X), s(Y)) → MINUS(X, Y)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MINUS(s(X), s(Y)) → MINUS(X, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MINUS(x1, x2)  =  MINUS(x2)
s(x1)  =  s(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
s1 > MINUS1

Status:
MINUS1: [1]
s1: [1]


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOT(s(X), s(Y)) → QUOT(minus(X, Y), s(Y))

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


QUOT(s(X), s(Y)) → QUOT(minus(X, Y), s(Y))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
QUOT(x1, x2)  =  QUOT(x1)
s(x1)  =  s(x1)
minus(x1, x2)  =  minus
0  =  0
n__s(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
s1 > QUOT1 > minus > 0

Status:
QUOT1: [1]
s1: [1]
minus: []
0: []


The following usable rules [FROCOS05] were oriented:

minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ZWQUOT(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__zWquot(X1, X2)) → ZWQUOT(activate(X1), activate(X2))
ZWQUOT(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)
ACTIVATE(n__zWquot(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__zWquot(X1, X2)) → ACTIVATE(X2)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ZWQUOT(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ACTIVATE(n__from(X)) → ACTIVATE(X)
ZWQUOT(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)
ACTIVATE(n__zWquot(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__zWquot(X1, X2)) → ACTIVATE(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ZWQUOT(x1, x2)  =  ZWQUOT(x1, x2)
cons(x1, x2)  =  x2
ACTIVATE(x1)  =  x1
n__from(x1)  =  n__from(x1)
n__s(x1)  =  x1
n__zWquot(x1, x2)  =  n__zWquot(x1, x2)
activate(x1)  =  x1
from(x1)  =  from(x1)
s(x1)  =  x1
zWquot(x1, x2)  =  zWquot(x1, x2)
nil  =  nil
quot(x1, x2)  =  quot(x1, x2)
0  =  0
minus(x1, x2)  =  minus

Lexicographic path order with status [LPO].
Quasi-Precedence:
[ZWQUOT2, nfrom1, nzWquot2, from1, zWquot2, nil, quot2, 0, minus]

Status:
ZWQUOT2: [2,1]
nfrom1: [1]
nzWquot2: [2,1]
from1: [1]
zWquot2: [2,1]
nil: []
quot2: [2,1]
0: []
minus: []


The following usable rules [FROCOS05] were oriented:

activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X
s(X) → n__s(X)
from(X) → cons(X, n__from(n__s(X)))
from(X) → n__from(X)
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(X1, X2) → n__zWquot(X1, X2)
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__zWquot(X1, X2)) → ZWQUOT(activate(X1), activate(X2))

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__s(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__s(X)) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVATE(x1)  =  x1
n__s(x1)  =  n__s(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
ns1: [1]


The following usable rules [FROCOS05] were oriented: none

(21) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(23) TRUE

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(s(N), cons(X, XS)) → SEL(N, activate(XS))

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(s(N), cons(X, XS)) → SEL(N, activate(XS))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x1)
s(x1)  =  s(x1)
cons(x1, x2)  =  cons(x1, x2)
activate(x1)  =  activate
n__from(x1)  =  n__from(x1)
from(x1)  =  from(x1)
n__s(x1)  =  n__s(x1)
n__zWquot(x1, x2)  =  n__zWquot(x1, x2)
zWquot(x1, x2)  =  zWquot(x1, x2)
nil  =  nil
quot(x1, x2)  =  quot(x1, x2)
0  =  0
minus(x1, x2)  =  minus

Lexicographic path order with status [LPO].
Quasi-Precedence:
s1 > [SEL1, activate, nfrom1, from1, ns1, nzWquot2, nil, quot2, 0, minus]
zWquot2 > cons2 > [SEL1, activate, nfrom1, from1, ns1, nzWquot2, nil, quot2, 0, minus]

Status:
SEL1: [1]
s1: [1]
cons2: [1,2]
activate: []
nfrom1: [1]
from1: [1]
ns1: [1]
nzWquot2: [1,2]
zWquot2: [2,1]
nil: []
quot2: [1,2]
0: []
minus: []


The following usable rules [FROCOS05] were oriented: none

(26) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(28) TRUE