(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(0))) → mark(0)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(0)) → MARK(cons(0, f(s(0))))
ACTIVE(f(0)) → CONS(0, f(s(0)))
ACTIVE(f(0)) → F(s(0))
ACTIVE(f(0)) → S(0)
ACTIVE(f(s(0))) → MARK(f(p(s(0))))
ACTIVE(f(s(0))) → F(p(s(0)))
ACTIVE(f(s(0))) → P(s(0))
ACTIVE(p(s(0))) → MARK(0)
MARK(f(X)) → ACTIVE(f(mark(X)))
MARK(f(X)) → F(mark(X))
MARK(f(X)) → MARK(X)
MARK(0) → ACTIVE(0)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(p(X)) → ACTIVE(p(mark(X)))
MARK(p(X)) → P(mark(X))
MARK(p(X)) → MARK(X)
F(mark(X)) → F(X)
F(active(X)) → F(X)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
S(mark(X)) → S(X)
S(active(X)) → S(X)
P(mark(X)) → P(X)
P(active(X)) → P(X)

The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(0))) → mark(0)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 11 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P(active(X)) → P(X)
P(mark(X)) → P(X)

The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(0))) → mark(0)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


P(active(X)) → P(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
P(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P(mark(X)) → P(X)

The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(0))) → mark(0)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


P(mark(X)) → P(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
P(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(0))) → mark(0)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(0))) → mark(0)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(active(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(0))) → mark(0)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(0))) → mark(0)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(0))) → mark(0)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
mark1 > [CONS1, active1]


The following usable rules [FROCOS05] were oriented: none

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(0))) → mark(0)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
mark1 > CONS1
active1 > CONS1


The following usable rules [FROCOS05] were oriented: none

(23) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(0))) → mark(0)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(25) TRUE

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(active(X)) → F(X)
F(mark(X)) → F(X)

The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(0))) → mark(0)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(active(X)) → F(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(mark(X)) → F(X)

The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(0))) → mark(0)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(mark(X)) → F(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(30) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(0))) → mark(0)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(32) TRUE

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(f(0)) → MARK(cons(0, f(s(0))))
MARK(cons(X1, X2)) → MARK(X1)
MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(s(0))) → MARK(f(p(s(0))))
MARK(f(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → MARK(X)
MARK(p(X)) → ACTIVE(p(mark(X)))
MARK(p(X)) → MARK(X)

The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(0))) → mark(0)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(cons(X1, X2)) → MARK(X1)
MARK(f(X)) → MARK(X)
MARK(s(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
cons(x1, x2)  =  cons(x1)
ACTIVE(x1)  =  x1
mark(x1)  =  x1
f(x1)  =  f(x1)
0  =  0
s(x1)  =  s(x1)
p(x1)  =  x1
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
[cons1, f1, 0, s1]


The following usable rules [FROCOS05] were oriented:

mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
f(active(X)) → f(X)
f(mark(X)) → f(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
p(active(X)) → p(X)
p(mark(X)) → p(X)
active(p(s(0))) → mark(0)

(35) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(f(0)) → MARK(cons(0, f(s(0))))
MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(s(0))) → MARK(f(p(s(0))))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(p(X)) → ACTIVE(p(mark(X)))
MARK(p(X)) → MARK(X)

The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(0))) → mark(0)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 2 less nodes.

(37) Complex Obligation (AND)

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(0)) → MARK(cons(0, f(s(0))))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(f(s(0))) → MARK(f(p(s(0))))
MARK(f(X)) → ACTIVE(f(mark(X)))

The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(0))) → mark(0)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(f(0)) → MARK(cons(0, f(s(0))))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(f(X)) → ACTIVE(f(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
f(x1)  =  x1
0  =  0
MARK(x1)  =  MARK(x1)
cons(x1, x2)  =  cons
s(x1)  =  s(x1)
mark(x1)  =  x1
p(x1)  =  p
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
[0, p] > [MARK1, cons, s1]


The following usable rules [FROCOS05] were oriented:

mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
f(active(X)) → f(X)
f(mark(X)) → f(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
active(p(s(0))) → mark(0)
p(active(X)) → p(X)
p(mark(X)) → p(X)

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(s(0))) → MARK(f(p(s(0))))

The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(0))) → mark(0)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(42) TRUE

(43) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(p(X)) → MARK(X)

The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(0))) → mark(0)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(44) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(p(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
p(x1)  =  p(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(45) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(0))) → mark(0)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(46) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(47) TRUE