(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(g(X), Y)) → MARK(f(X, f(g(X), Y)))
ACTIVE(f(g(X), Y)) → F(X, f(g(X), Y))
MARK(f(X1, X2)) → ACTIVE(f(mark(X1), X2))
MARK(f(X1, X2)) → F(mark(X1), X2)
MARK(f(X1, X2)) → MARK(X1)
MARK(g(X)) → ACTIVE(g(mark(X)))
MARK(g(X)) → G(mark(X))
MARK(g(X)) → MARK(X)
F(mark(X1), X2) → F(X1, X2)
F(X1, mark(X2)) → F(X1, X2)
F(active(X1), X2) → F(X1, X2)
F(X1, active(X2)) → F(X1, X2)
G(mark(X)) → G(X)
G(active(X)) → G(X)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(active(X)) → G(X)
G(mark(X)) → G(X)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(X1, mark(X2)) → F(X1, X2)
F(mark(X1), X2) → F(X1, X2)
F(active(X1), X2) → F(X1, X2)
F(X1, active(X2)) → F(X1, X2)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X1, X2)) → ACTIVE(f(mark(X1), X2))
ACTIVE(f(g(X), Y)) → MARK(f(X, f(g(X), Y)))
MARK(f(X1, X2)) → MARK(X1)
MARK(g(X)) → ACTIVE(g(mark(X)))
MARK(g(X)) → MARK(X)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(f(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
f(x1, x2)  =  f(x1)
ACTIVE(x1)  =  x1
mark(x1)  =  x1
g(x1)  =  x1
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X1, X2)) → ACTIVE(f(mark(X1), X2))
ACTIVE(f(g(X), Y)) → MARK(f(X, f(g(X), Y)))
MARK(g(X)) → ACTIVE(g(mark(X)))
MARK(g(X)) → MARK(X)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(g(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
f(x1, x2)  =  f
ACTIVE(x1)  =  x1
mark(x1)  =  x1
g(x1)  =  g(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
f > g1

The following usable rules [FROCOS05] were oriented:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X1, X2)) → ACTIVE(f(mark(X1), X2))
ACTIVE(f(g(X), Y)) → MARK(f(X, f(g(X), Y)))
MARK(g(X)) → ACTIVE(g(mark(X)))

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(f(g(X), Y)) → MARK(f(X, f(g(X), Y)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
f(x1, x2)  =  f(x1)
ACTIVE(x1)  =  x1
mark(x1)  =  x1
g(x1)  =  g(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X1, X2)) → ACTIVE(f(mark(X1), X2))
MARK(g(X)) → ACTIVE(g(mark(X)))

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(15) TRUE