0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 QDPOrderProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 QDP
↳7 QDPOrderProof (⇔)
↳8 QDP
↳9 PisEmptyProof (⇔)
↳10 TRUE
a__f(g(X), Y) → a__f(mark(X), f(g(X), Y))
mark(f(X1, X2)) → a__f(mark(X1), X2)
mark(g(X)) → g(mark(X))
a__f(X1, X2) → f(X1, X2)
A__F(g(X), Y) → A__F(mark(X), f(g(X), Y))
A__F(g(X), Y) → MARK(X)
MARK(f(X1, X2)) → A__F(mark(X1), X2)
MARK(f(X1, X2)) → MARK(X1)
MARK(g(X)) → MARK(X)
a__f(g(X), Y) → a__f(mark(X), f(g(X), Y))
mark(f(X1, X2)) → a__f(mark(X1), X2)
mark(g(X)) → g(mark(X))
a__f(X1, X2) → f(X1, X2)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A__F(g(X), Y) → A__F(mark(X), f(g(X), Y))
A__F(g(X), Y) → MARK(X)
MARK(g(X)) → MARK(X)
trivial
a__f(g(X), Y) → a__f(mark(X), f(g(X), Y))
mark(f(X1, X2)) → a__f(mark(X1), X2)
mark(g(X)) → g(mark(X))
a__f(X1, X2) → f(X1, X2)
MARK(f(X1, X2)) → A__F(mark(X1), X2)
MARK(f(X1, X2)) → MARK(X1)
a__f(g(X), Y) → a__f(mark(X), f(g(X), Y))
mark(f(X1, X2)) → a__f(mark(X1), X2)
mark(g(X)) → g(mark(X))
a__f(X1, X2) → f(X1, X2)
MARK(f(X1, X2)) → MARK(X1)
a__f(g(X), Y) → a__f(mark(X), f(g(X), Y))
mark(f(X1, X2)) → a__f(mark(X1), X2)
mark(g(X)) → g(mark(X))
a__f(X1, X2) → f(X1, X2)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(f(X1, X2)) → MARK(X1)
[MARK1, f1, af1, g1, mark1]
a__f(g(X), Y) → a__f(mark(X), f(g(X), Y))
mark(f(X1, X2)) → a__f(mark(X1), X2)
mark(g(X)) → g(mark(X))
a__f(X1, X2) → f(X1, X2)
a__f(g(X), Y) → a__f(mark(X), f(g(X), Y))
mark(f(X1, X2)) → a__f(mark(X1), X2)
mark(g(X)) → g(mark(X))
a__f(X1, X2) → f(X1, X2)