(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__f(g(X), Y) → a__f(mark(X), f(g(X), Y))
mark(f(X1, X2)) → a__f(mark(X1), X2)
mark(g(X)) → g(mark(X))
a__f(X1, X2) → f(X1, X2)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__F(g(X), Y) → A__F(mark(X), f(g(X), Y))
A__F(g(X), Y) → MARK(X)
MARK(f(X1, X2)) → A__F(mark(X1), X2)
MARK(f(X1, X2)) → MARK(X1)
MARK(g(X)) → MARK(X)

The TRS R consists of the following rules:

a__f(g(X), Y) → a__f(mark(X), f(g(X), Y))
mark(f(X1, X2)) → a__f(mark(X1), X2)
mark(g(X)) → g(mark(X))
a__f(X1, X2) → f(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(f(X1, X2)) → A__F(mark(X1), X2)
MARK(f(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(A__F(x1, x2)) = x1   
POL(MARK(x1)) = x1   
POL(a__f(x1, x2)) = 1 + x1   
POL(f(x1, x2)) = 1 + x1   
POL(g(x1)) = x1   
POL(mark(x1)) = x1   

The following usable rules [FROCOS05] were oriented:

mark(g(X)) → g(mark(X))
a__f(X1, X2) → f(X1, X2)
a__f(g(X), Y) → a__f(mark(X), f(g(X), Y))
mark(f(X1, X2)) → a__f(mark(X1), X2)

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__F(g(X), Y) → A__F(mark(X), f(g(X), Y))
A__F(g(X), Y) → MARK(X)
MARK(g(X)) → MARK(X)

The TRS R consists of the following rules:

a__f(g(X), Y) → a__f(mark(X), f(g(X), Y))
mark(f(X1, X2)) → a__f(mark(X1), X2)
mark(g(X)) → g(mark(X))
a__f(X1, X2) → f(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(g(X)) → MARK(X)

The TRS R consists of the following rules:

a__f(g(X), Y) → a__f(mark(X), f(g(X), Y))
mark(f(X1, X2)) → a__f(mark(X1), X2)
mark(g(X)) → g(mark(X))
a__f(X1, X2) → f(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(g(X)) → MARK(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MARK(g(X)) → MARK(X)
    The graph contains the following edges 1 > 1

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__F(g(X), Y) → A__F(mark(X), f(g(X), Y))

The TRS R consists of the following rules:

a__f(g(X), Y) → a__f(mark(X), f(g(X), Y))
mark(f(X1, X2)) → a__f(mark(X1), X2)
mark(g(X)) → g(mark(X))
a__f(X1, X2) → f(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__F(g(X), Y) → A__F(mark(X), f(g(X), Y))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:

POL(A__F(x1, x2)) =
/0\
\0/
+
/11\
\11/
·x1 +
/00\
\00/
·x2

POL(g(x1)) =
/1\
\1/
+
/01\
\11/
·x1

POL(mark(x1)) =
/0\
\0/
+
/01\
\11/
·x1

POL(f(x1, x2)) =
/0\
\0/
+
/01\
\11/
·x1 +
/00\
\00/
·x2

POL(a__f(x1, x2)) =
/0\
\0/
+
/01\
\11/
·x1 +
/00\
\00/
·x2

The following usable rules [FROCOS05] were oriented:

mark(g(X)) → g(mark(X))
a__f(X1, X2) → f(X1, X2)
a__f(g(X), Y) → a__f(mark(X), f(g(X), Y))
mark(f(X1, X2)) → a__f(mark(X1), X2)

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__f(g(X), Y) → a__f(mark(X), f(g(X), Y))
mark(f(X1, X2)) → a__f(mark(X1), X2)
mark(g(X)) → g(mark(X))
a__f(X1, X2) → f(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE