(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(g(X), Y)) → F(X, f(g(X), Y))
ACTIVE(f(X1, X2)) → F(active(X1), X2)
ACTIVE(f(X1, X2)) → ACTIVE(X1)
ACTIVE(g(X)) → G(active(X))
ACTIVE(g(X)) → ACTIVE(X)
F(mark(X1), X2) → F(X1, X2)
G(mark(X)) → G(X)
PROPER(f(X1, X2)) → F(proper(X1), proper(X2))
PROPER(f(X1, X2)) → PROPER(X1)
PROPER(f(X1, X2)) → PROPER(X2)
PROPER(g(X)) → G(proper(X))
PROPER(g(X)) → PROPER(X)
F(ok(X1), ok(X2)) → F(X1, X2)
G(ok(X)) → G(X)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 7 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(ok(X)) → G(X)
G(mark(X)) → G(X)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(ok(X)) → G(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
G(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
f(x1, x2)  =  x2
g(x1)  =  x1
proper(x1)  =  proper
top(x1)  =  top

Recursive Path Order [RPO].
Precedence:
ok1 > proper
active1 > proper
top > proper

The following usable rules [FROCOS05] were oriented:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(mark(X)) → G(X)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(mark(X)) → G(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
G(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
f(x1, x2)  =  x1
g(x1)  =  x1
proper(x1)  =  x1
ok(x1)  =  ok(x1)
top(x1)  =  top

Recursive Path Order [RPO].
Precedence:
active1 > mark1
ok1 > mark1
top > mark1

The following usable rules [FROCOS05] were oriented:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(ok(X1), ok(X2)) → F(X1, X2)
F(mark(X1), X2) → F(X1, X2)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(ok(X1), ok(X2)) → F(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(x1, x2)  =  F(x1, x2)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
f(x1, x2)  =  x1
g(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive Path Order [RPO].
Precedence:
ok1 > F2 > proper1
active1 > proper1
top > proper1

The following usable rules [FROCOS05] were oriented:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(mark(X1), X2) → F(X1, X2)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(mark(X1), X2) → F(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(x1, x2)  =  F(x1)
mark(x1)  =  mark(x1)
active(x1)  =  x1
f(x1, x2)  =  x1
g(x1)  =  g(x1)
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive Path Order [RPO].
Precedence:
proper1 > g1 > mark1 > F1
ok > g1 > mark1 > F1
ok > top > F1

The following usable rules [FROCOS05] were oriented:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(f(X1, X2)) → PROPER(X2)
PROPER(f(X1, X2)) → PROPER(X1)
PROPER(g(X)) → PROPER(X)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(f(X1, X2)) → PROPER(X2)
PROPER(f(X1, X2)) → PROPER(X1)
PROPER(g(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
f(x1, x2)  =  f(x1, x2)
g(x1)  =  g(x1)
active(x1)  =  x1
mark(x1)  =  mark
proper(x1)  =  x1
ok(x1)  =  ok
top(x1)  =  top

Recursive Path Order [RPO].
Precedence:
f2 > mark > g1 > PROPER1
ok > g1 > PROPER1
top > PROPER1

The following usable rules [FROCOS05] were oriented:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(21) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(23) TRUE

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(g(X)) → ACTIVE(X)
ACTIVE(f(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(g(X)) → ACTIVE(X)
ACTIVE(f(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
g(x1)  =  g(x1)
f(x1, x2)  =  f(x1)
active(x1)  =  x1
mark(x1)  =  mark(x1)
proper(x1)  =  x1
ok(x1)  =  ok
top(x1)  =  top

Recursive Path Order [RPO].
Precedence:
f1 > ACTIVE1 > mark1
f1 > g1 > mark1
ok > g1 > mark1
top > mark1

The following usable rules [FROCOS05] were oriented:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(26) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(28) TRUE

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TOP(ok(X)) → TOP(active(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TOP(x1)  =  TOP(x1)
ok(x1)  =  ok(x1)
active(x1)  =  x1
mark(x1)  =  x1
proper(x1)  =  proper
f(x1, x2)  =  x2
g(x1)  =  x1
top(x1)  =  top(x1)

Recursive Path Order [RPO].
Precedence:
TOP1 > proper
ok1 > top1 > proper

The following usable rules [FROCOS05] were oriented:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TOP(mark(X)) → TOP(proper(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TOP(x1)  =  x1
mark(x1)  =  mark
proper(x1)  =  proper
active(x1)  =  active(x1)
f(x1, x2)  =  x1
g(x1)  =  x1
ok(x1)  =  ok(x1)
top(x1)  =  top(x1)

Recursive Path Order [RPO].
Precedence:
ok1 > active1 > mark > proper
top1 > active1 > mark > proper

The following usable rules [FROCOS05] were oriented:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(33) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(35) TRUE