(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
app(nil, YS) → YS
app(cons(X), YS) → cons(X)
from(X) → cons(X)
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X), cons(Y)) → cons(app(Y, cons(X)))
prefix(L) → cons(nil)
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
app(nil, YS) → YS
app(cons(X), YS) → cons(X)
from(X) → cons(X)
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X), cons(Y)) → cons(app(Y, cons(X)))
prefix(L) → cons(nil)
The set Q consists of the following terms:
app(nil, x0)
app(cons(x0), x1)
from(x0)
zWadr(nil, x0)
zWadr(x0, nil)
zWadr(cons(x0), cons(x1))
prefix(x0)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ZWADR(cons(X), cons(Y)) → APP(Y, cons(X))
The TRS R consists of the following rules:
app(nil, YS) → YS
app(cons(X), YS) → cons(X)
from(X) → cons(X)
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X), cons(Y)) → cons(app(Y, cons(X)))
prefix(L) → cons(nil)
The set Q consists of the following terms:
app(nil, x0)
app(cons(x0), x1)
from(x0)
zWadr(nil, x0)
zWadr(x0, nil)
zWadr(cons(x0), cons(x1))
prefix(x0)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(6) TRUE