(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(dbl(s(X))) → S(s(dbl(X)))
ACTIVE(dbl(s(X))) → S(dbl(X))
ACTIVE(dbl(s(X))) → DBL(X)
ACTIVE(dbls(cons(X, Y))) → CONS(dbl(X), dbls(Y))
ACTIVE(dbls(cons(X, Y))) → DBL(X)
ACTIVE(dbls(cons(X, Y))) → DBLS(Y)
ACTIVE(sel(s(X), cons(Y, Z))) → SEL(X, Z)
ACTIVE(indx(cons(X, Y), Z)) → CONS(sel(X, Z), indx(Y, Z))
ACTIVE(indx(cons(X, Y), Z)) → SEL(X, Z)
ACTIVE(indx(cons(X, Y), Z)) → INDX(Y, Z)
ACTIVE(from(X)) → CONS(X, from(s(X)))
ACTIVE(from(X)) → FROM(s(X))
ACTIVE(from(X)) → S(X)
ACTIVE(dbl(X)) → DBL(active(X))
ACTIVE(dbl(X)) → ACTIVE(X)
ACTIVE(dbls(X)) → DBLS(active(X))
ACTIVE(dbls(X)) → ACTIVE(X)
ACTIVE(sel(X1, X2)) → SEL(active(X1), X2)
ACTIVE(sel(X1, X2)) → ACTIVE(X1)
ACTIVE(sel(X1, X2)) → SEL(X1, active(X2))
ACTIVE(sel(X1, X2)) → ACTIVE(X2)
ACTIVE(indx(X1, X2)) → INDX(active(X1), X2)
ACTIVE(indx(X1, X2)) → ACTIVE(X1)
DBL(mark(X)) → DBL(X)
DBLS(mark(X)) → DBLS(X)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(X1, mark(X2)) → SEL(X1, X2)
INDX(mark(X1), X2) → INDX(X1, X2)
PROPER(dbl(X)) → DBL(proper(X))
PROPER(dbl(X)) → PROPER(X)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(dbls(X)) → DBLS(proper(X))
PROPER(dbls(X)) → PROPER(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(sel(X1, X2)) → SEL(proper(X1), proper(X2))
PROPER(sel(X1, X2)) → PROPER(X1)
PROPER(sel(X1, X2)) → PROPER(X2)
PROPER(indx(X1, X2)) → INDX(proper(X1), proper(X2))
PROPER(indx(X1, X2)) → PROPER(X1)
PROPER(indx(X1, X2)) → PROPER(X2)
PROPER(from(X)) → FROM(proper(X))
PROPER(from(X)) → PROPER(X)
DBL(ok(X)) → DBL(X)
S(ok(X)) → S(X)
DBLS(ok(X)) → DBLS(X)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
SEL(ok(X1), ok(X2)) → SEL(X1, X2)
INDX(ok(X1), ok(X2)) → INDX(X1, X2)
FROM(ok(X)) → FROM(X)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 10 SCCs with 27 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(ok(X)) → FROM(X)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FROM(ok(X)) → FROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
ok1 > FROM1


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(ok(X1), ok(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(ok(X1), ok(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  x1
ok(x1)  =  ok(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
ok1 > S1


The following usable rules [FROCOS05] were oriented: none

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INDX(ok(X1), ok(X2)) → INDX(X1, X2)
INDX(mark(X1), X2) → INDX(X1, X2)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


INDX(ok(X1), ok(X2)) → INDX(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
INDX(x1, x2)  =  INDX(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Recursive Path Order [RPO].
Precedence:
ok1 > INDX1
mark > INDX1


The following usable rules [FROCOS05] were oriented: none

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INDX(mark(X1), X2) → INDX(X1, X2)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


INDX(mark(X1), X2) → INDX(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
INDX(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(24) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(26) TRUE

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(ok(X1), ok(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(X1, mark(X2)) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(mark(X1), X2) → SEL(X1, X2)
SEL(ok(X1), ok(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(mark(X1), X2) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x1, x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > SEL2


The following usable rules [FROCOS05] were oriented: none

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(ok(X1), ok(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(ok(X1), ok(X2)) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  x1
ok(x1)  =  ok(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(33) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(35) TRUE

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DBLS(ok(X)) → DBLS(X)
DBLS(mark(X)) → DBLS(X)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(37) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


DBLS(ok(X)) → DBLS(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
DBLS(x1)  =  DBLS(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
[DBLS1, ok1]


The following usable rules [FROCOS05] were oriented: none

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DBLS(mark(X)) → DBLS(X)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


DBLS(mark(X)) → DBLS(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
mark1 > DBLS1


The following usable rules [FROCOS05] were oriented: none

(40) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(42) TRUE

(43) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DBL(ok(X)) → DBL(X)
DBL(mark(X)) → DBL(X)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(44) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


DBL(ok(X)) → DBL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
DBL(x1)  =  DBL(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
[DBL1, ok1]


The following usable rules [FROCOS05] were oriented: none

(45) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DBL(mark(X)) → DBL(X)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(46) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


DBL(mark(X)) → DBL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
mark1 > DBL1


The following usable rules [FROCOS05] were oriented: none

(47) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(48) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(49) TRUE

(50) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(s(X)) → PROPER(X)
PROPER(dbl(X)) → PROPER(X)
PROPER(dbls(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(sel(X1, X2)) → PROPER(X1)
PROPER(sel(X1, X2)) → PROPER(X2)
PROPER(indx(X1, X2)) → PROPER(X1)
PROPER(indx(X1, X2)) → PROPER(X2)
PROPER(from(X)) → PROPER(X)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(51) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(sel(X1, X2)) → PROPER(X1)
PROPER(sel(X1, X2)) → PROPER(X2)
PROPER(indx(X1, X2)) → PROPER(X1)
PROPER(indx(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
s(x1)  =  x1
dbl(x1)  =  x1
dbls(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
sel(x1, x2)  =  sel(x1, x2)
indx(x1, x2)  =  indx(x1, x2)
from(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
cons2 > [PROPER1, indx2]
sel2 > [PROPER1, indx2]


The following usable rules [FROCOS05] were oriented: none

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(s(X)) → PROPER(X)
PROPER(dbl(X)) → PROPER(X)
PROPER(dbls(X)) → PROPER(X)
PROPER(from(X)) → PROPER(X)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(53) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(s(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
s(x1)  =  s(x1)
dbl(x1)  =  x1
dbls(x1)  =  x1
from(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
[PROPER1, s1]


The following usable rules [FROCOS05] were oriented: none

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(dbl(X)) → PROPER(X)
PROPER(dbls(X)) → PROPER(X)
PROPER(from(X)) → PROPER(X)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(55) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(dbls(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
dbl(x1)  =  x1
dbls(x1)  =  dbls(x1)
from(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(56) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(dbl(X)) → PROPER(X)
PROPER(from(X)) → PROPER(X)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(57) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(dbl(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
dbl(x1)  =  dbl(x1)
from(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
[PROPER1, dbl1]


The following usable rules [FROCOS05] were oriented: none

(58) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(from(X)) → PROPER(X)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(59) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(from(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
from1 > PROPER1


The following usable rules [FROCOS05] were oriented: none

(60) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(61) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(62) TRUE

(63) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(dbls(X)) → ACTIVE(X)
ACTIVE(dbl(X)) → ACTIVE(X)
ACTIVE(sel(X1, X2)) → ACTIVE(X1)
ACTIVE(sel(X1, X2)) → ACTIVE(X2)
ACTIVE(indx(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(64) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(dbls(X)) → ACTIVE(X)
ACTIVE(sel(X1, X2)) → ACTIVE(X1)
ACTIVE(sel(X1, X2)) → ACTIVE(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
dbls(x1)  =  dbls(x1)
dbl(x1)  =  x1
sel(x1, x2)  =  sel(x1, x2)
indx(x1, x2)  =  x1

Recursive Path Order [RPO].
Precedence:
dbls1 > [ACTIVE1, sel2]


The following usable rules [FROCOS05] were oriented: none

(65) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(dbl(X)) → ACTIVE(X)
ACTIVE(indx(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(66) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(dbl(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
dbl(x1)  =  dbl(x1)
indx(x1, x2)  =  x1

Recursive Path Order [RPO].
Precedence:
[ACTIVE1, dbl1]


The following usable rules [FROCOS05] were oriented: none

(67) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(indx(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(68) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(indx(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
indx(x1, x2)  =  indx(x1, x2)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(69) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(70) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(71) TRUE

(72) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.