(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
fst(0, Z) → nil
fst(s, cons(Y)) → cons(Y)
from(X) → cons(X)
add(0, X) → X
add(s, Y) → s
len(nil) → 0
len(cons(X)) → s
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Recursive path order with status [RPO].
Precedence:
fst2 > nil > 0 > s
fst2 > cons1 > s
from1 > cons1 > s
add2 > s
len1 > 0 > s
Status:
add2: multiset
from1: multiset
cons1: multiset
fst2: multiset
s: multiset
0: multiset
nil: multiset
len1: multiset
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
fst(0, Z) → nil
fst(s, cons(Y)) → cons(Y)
from(X) → cons(X)
add(0, X) → X
add(s, Y) → s
len(nil) → 0
len(cons(X)) → s
(2) Obligation:
Q restricted rewrite system:
R is empty.
Q is empty.
(3) RisEmptyProof (EQUIVALENT transformation)
The TRS R is empty. Hence, termination is trivially proven.
(4) TRUE