(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
terms(X) → n__terms(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TERMS(N) → SQR(N)
SQR(s(X)) → ADD(sqr(X), dbl(X))
SQR(s(X)) → SQR(X)
SQR(s(X)) → DBL(X)
DBL(s(X)) → DBL(X)
ADD(s(X), Y) → ADD(X, Y)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__terms(X)) → TERMS(X)
ACTIVATE(n__first(X1, X2)) → FIRST(X1, X2)

The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
terms(X) → n__terms(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 4 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADD(s(X), Y) → ADD(X, Y)

The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
terms(X) → n__terms(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ADD(s(X), Y) → ADD(X, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ADD(x1, x2)  =  ADD(x1, x2)
s(x1)  =  s(x1)
terms(x1)  =  x1
cons(x1, x2)  =  cons
recip(x1)  =  x1
sqr(x1)  =  sqr(x1)
n__terms(x1)  =  x1
0  =  0
add(x1, x2)  =  add(x1, x2)
dbl(x1)  =  dbl(x1)
first(x1, x2)  =  x2
nil  =  nil
n__first(x1, x2)  =  x2
activate(x1)  =  activate(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
sqr1 > add2 > s1 > ADD2 > [cons, nil, activate1]
sqr1 > dbl1 > s1 > ADD2 > [cons, nil, activate1]
sqr1 > dbl1 > 0 > [cons, nil, activate1]

Status:
ADD2: [1,2]
s1: [1]
cons: multiset
sqr1: [1]
0: multiset
add2: [1,2]
dbl1: multiset
nil: multiset
activate1: multiset


The following usable rules [FROCOS05] were oriented:

terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
terms(X) → n__terms(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
terms(X) → n__terms(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DBL(s(X)) → DBL(X)

The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
terms(X) → n__terms(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


DBL(s(X)) → DBL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
DBL(x1)  =  x1
s(x1)  =  s(x1)
terms(x1)  =  x1
cons(x1, x2)  =  cons
recip(x1)  =  x1
sqr(x1)  =  sqr(x1)
n__terms(x1)  =  x1
0  =  0
add(x1, x2)  =  add(x1, x2)
dbl(x1)  =  dbl(x1)
first(x1, x2)  =  x2
nil  =  nil
n__first(x1, x2)  =  x2
activate(x1)  =  activate(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
sqr1 > add2 > s1 > [cons, nil, activate1]
sqr1 > dbl1 > s1 > [cons, nil, activate1]
sqr1 > dbl1 > 0 > [cons, nil, activate1]

Status:
s1: [1]
cons: multiset
sqr1: [1]
0: multiset
add2: [1,2]
dbl1: multiset
nil: multiset
activate1: multiset


The following usable rules [FROCOS05] were oriented:

terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
terms(X) → n__terms(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
terms(X) → n__terms(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SQR(s(X)) → SQR(X)

The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
terms(X) → n__terms(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SQR(s(X)) → SQR(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SQR(x1)  =  x1
s(x1)  =  s(x1)
terms(x1)  =  x1
cons(x1, x2)  =  cons
recip(x1)  =  x1
sqr(x1)  =  sqr(x1)
n__terms(x1)  =  x1
0  =  0
add(x1, x2)  =  add(x1, x2)
dbl(x1)  =  dbl(x1)
first(x1, x2)  =  x2
nil  =  nil
n__first(x1, x2)  =  x2
activate(x1)  =  activate(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
sqr1 > add2 > s1 > [cons, nil, activate1]
sqr1 > dbl1 > s1 > [cons, nil, activate1]
sqr1 > dbl1 > 0 > [cons, nil, activate1]

Status:
s1: [1]
cons: multiset
sqr1: [1]
0: multiset
add2: [1,2]
dbl1: multiset
nil: multiset
activate1: multiset


The following usable rules [FROCOS05] were oriented:

terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
terms(X) → n__terms(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
terms(X) → n__terms(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__first(X1, X2)) → FIRST(X1, X2)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)

The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
terms(X) → n__terms(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVATE(x1)  =  x1
n__first(x1, x2)  =  x2
FIRST(x1, x2)  =  x2
s(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
terms(x1)  =  terms(x1)
recip(x1)  =  recip
sqr(x1)  =  sqr(x1)
n__terms(x1)  =  n__terms(x1)
0  =  0
add(x1, x2)  =  add(x2)
dbl(x1)  =  dbl
first(x1, x2)  =  first(x2)
nil  =  nil
activate(x1)  =  activate(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[terms1, first1, activate1] > [cons2, recip, nterms1, 0, add1, dbl, nil]
sqr1 > [cons2, recip, nterms1, 0, add1, dbl, nil]

Status:
cons2: [1,2]
terms1: [1]
recip: []
sqr1: multiset
nterms1: multiset
0: multiset
add1: [1]
dbl: []
first1: [1]
nil: multiset
activate1: [1]


The following usable rules [FROCOS05] were oriented:

terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
terms(X) → n__terms(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__first(X1, X2)) → FIRST(X1, X2)

The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
terms(X) → n__terms(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(24) TRUE