(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)

The set Q consists of the following terms:

terms(x0)
sqr(0)
sqr(s(x0))
dbl(0)
dbl(s(x0))
add(0, x0)
add(s(x0), x1)
first(0, x0)
first(s(x0), cons(x1))

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TERMS(N) → SQR(N)
SQR(s(X)) → ADD(sqr(X), dbl(X))
SQR(s(X)) → SQR(X)
SQR(s(X)) → DBL(X)
DBL(s(X)) → DBL(X)
ADD(s(X), Y) → ADD(X, Y)

The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)

The set Q consists of the following terms:

terms(x0)
sqr(0)
sqr(s(x0))
dbl(0)
dbl(s(x0))
add(0, x0)
add(s(x0), x1)
first(0, x0)
first(s(x0), cons(x1))

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADD(s(X), Y) → ADD(X, Y)

The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)

The set Q consists of the following terms:

terms(x0)
sqr(0)
sqr(s(x0))
dbl(0)
dbl(s(x0))
add(0, x0)
add(s(x0), x1)
first(0, x0)
first(s(x0), cons(x1))

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ADD(s(X), Y) → ADD(X, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ADD(x1, x2)  =  ADD(x1, x2)
s(x1)  =  s(x1)
terms(x1)  =  terms(x1)
cons(x1)  =  cons
recip(x1)  =  recip
sqr(x1)  =  sqr(x1)
0  =  0
add(x1, x2)  =  add(x1, x2)
dbl(x1)  =  dbl(x1)
first(x1, x2)  =  first(x1, x2)
nil  =  nil

Recursive path order with status [RPO].
Quasi-Precedence:
terms1 > [cons, recip, first2, nil]
sqr1 > add2 > s1 > ADD2 > [cons, recip, first2, nil]
sqr1 > dbl1 > s1 > ADD2 > [cons, recip, first2, nil]
sqr1 > dbl1 > 0 > [cons, recip, first2, nil]

Status:
ADD2: [2,1]
s1: multiset
terms1: [1]
cons: multiset
recip: multiset
sqr1: [1]
0: multiset
add2: multiset
dbl1: multiset
first2: multiset
nil: multiset


The following usable rules [FROCOS05] were oriented:

terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)

The set Q consists of the following terms:

terms(x0)
sqr(0)
sqr(s(x0))
dbl(0)
dbl(s(x0))
add(0, x0)
add(s(x0), x1)
first(0, x0)
first(s(x0), cons(x1))

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DBL(s(X)) → DBL(X)

The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)

The set Q consists of the following terms:

terms(x0)
sqr(0)
sqr(s(x0))
dbl(0)
dbl(s(x0))
add(0, x0)
add(s(x0), x1)
first(0, x0)
first(s(x0), cons(x1))

We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


DBL(s(X)) → DBL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
DBL(x1)  =  x1
s(x1)  =  s(x1)
terms(x1)  =  terms(x1)
cons(x1)  =  cons
recip(x1)  =  recip
sqr(x1)  =  sqr(x1)
0  =  0
add(x1, x2)  =  add(x1, x2)
dbl(x1)  =  dbl(x1)
first(x1, x2)  =  first(x1, x2)
nil  =  nil

Recursive path order with status [RPO].
Quasi-Precedence:
terms1 > [cons, recip, nil]
sqr1 > add2 > s1 > [cons, recip, nil]
sqr1 > dbl1 > s1 > [cons, recip, nil]
sqr1 > dbl1 > 0 > [cons, recip, nil]
first2 > [cons, recip, nil]

Status:
s1: multiset
terms1: multiset
cons: []
recip: multiset
sqr1: [1]
0: multiset
add2: multiset
dbl1: multiset
first2: multiset
nil: multiset


The following usable rules [FROCOS05] were oriented:

terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)

The set Q consists of the following terms:

terms(x0)
sqr(0)
sqr(s(x0))
dbl(0)
dbl(s(x0))
add(0, x0)
add(s(x0), x1)
first(0, x0)
first(s(x0), cons(x1))

We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SQR(s(X)) → SQR(X)

The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)

The set Q consists of the following terms:

terms(x0)
sqr(0)
sqr(s(x0))
dbl(0)
dbl(s(x0))
add(0, x0)
add(s(x0), x1)
first(0, x0)
first(s(x0), cons(x1))

We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SQR(s(X)) → SQR(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SQR(x1)  =  x1
s(x1)  =  s(x1)
terms(x1)  =  terms(x1)
cons(x1)  =  cons
recip(x1)  =  recip
sqr(x1)  =  sqr(x1)
0  =  0
add(x1, x2)  =  add(x1, x2)
dbl(x1)  =  dbl(x1)
first(x1, x2)  =  first(x1, x2)
nil  =  nil

Recursive path order with status [RPO].
Quasi-Precedence:
terms1 > [cons, recip, nil]
sqr1 > add2 > s1 > [cons, recip, nil]
sqr1 > dbl1 > s1 > [cons, recip, nil]
sqr1 > dbl1 > 0 > [cons, recip, nil]
first2 > [cons, recip, nil]

Status:
s1: multiset
terms1: multiset
cons: []
recip: multiset
sqr1: [1]
0: multiset
add2: multiset
dbl1: multiset
first2: multiset
nil: multiset


The following usable rules [FROCOS05] were oriented:

terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)

(19) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)

The set Q consists of the following terms:

terms(x0)
sqr(0)
sqr(s(x0))
dbl(0)
dbl(s(x0))
add(0, x0)
add(s(x0), x1)
first(0, x0)
first(s(x0), cons(x1))

We have to consider all minimal (P,Q,R)-chains.

(20) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(21) TRUE