(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Lexicographic Path Order [LPO].
Precedence:
terms1 > cons1
terms1 > recip1
terms1 > sqr1 > add2 > s1
terms1 > sqr1 > dbl1 > 0
terms1 > sqr1 > dbl1 > s1
first2 > nil
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)


(2) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(3) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(4) TRUE