(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Recursive path order with status [RPO].
Quasi-Precedence:
terms1 > recip1 > [cons1, s1]
terms1 > sqr1 > [0, nil] > [cons1, s1]
terms1 > sqr1 > add2 > [cons1, s1]
terms1 > sqr1 > dbl1 > [cons1, s1]
first2 > [0, nil] > [cons1, s1]
Status:
add2: multiset
cons1: multiset
sqr1: multiset
dbl1: [1]
s1: multiset
0: multiset
first2: multiset
terms1: multiset
nil: multiset
recip1: [1]
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)
(2) Obligation:
Q restricted rewrite system:
R is empty.
Q is empty.
(3) RisEmptyProof (EQUIVALENT transformation)
The TRS R is empty. Hence, termination is trivially proven.
(4) TRUE