(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__TERMS(N) → A__SQR(mark(N))
A__TERMS(N) → MARK(N)
A__SQR(s(X)) → A__ADD(a__sqr(mark(X)), a__dbl(mark(X)))
A__SQR(s(X)) → A__SQR(mark(X))
A__SQR(s(X)) → MARK(X)
A__SQR(s(X)) → A__DBL(mark(X))
A__DBL(s(X)) → A__DBL(mark(X))
A__DBL(s(X)) → MARK(X)
A__ADD(0, X) → MARK(X)
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
A__ADD(s(X), Y) → MARK(X)
A__ADD(s(X), Y) → MARK(Y)
A__FIRST(s(X), cons(Y, Z)) → MARK(Y)
MARK(terms(X)) → A__TERMS(mark(X))
MARK(terms(X)) → MARK(X)
MARK(sqr(X)) → A__SQR(mark(X))
MARK(sqr(X)) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
MARK(add(X1, X2)) → MARK(X1)
MARK(add(X1, X2)) → MARK(X2)
MARK(dbl(X)) → A__DBL(mark(X))
MARK(dbl(X)) → MARK(X)
MARK(first(X1, X2)) → A__FIRST(mark(X1), mark(X2))
MARK(first(X1, X2)) → MARK(X1)
MARK(first(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(recip(X)) → MARK(X)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__FIRST(s(X), cons(Y, Z)) → MARK(Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(A__TERMS(x1)) = 0A + 1A·x1

POL(A__SQR(x1)) = 0A + 0A·x1

POL(mark(x1)) = -I + 0A·x1

POL(MARK(x1)) = 0A + 0A·x1

POL(s(x1)) = -I + 0A·x1

POL(A__ADD(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(a__sqr(x1)) = 0A + 0A·x1

POL(a__dbl(x1)) = 0A + 0A·x1

POL(A__DBL(x1)) = 0A + 0A·x1

POL(0) = 0A

POL(A__FIRST(x1, x2)) = 0A + 0A·x1 + 1A·x2

POL(cons(x1, x2)) = 0A + 0A·x1 + -I·x2

POL(terms(x1)) = 0A + 1A·x1

POL(sqr(x1)) = 0A + 0A·x1

POL(add(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(dbl(x1)) = 0A + 0A·x1

POL(first(x1, x2)) = 0A + 0A·x1 + 1A·x2

POL(recip(x1)) = -I + 0A·x1

POL(a__add(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(a__terms(x1)) = 0A + 1A·x1

POL(a__first(x1, x2)) = 0A + 0A·x1 + 1A·x2

POL(nil) = 0A

The following usable rules [FROCOS05] were oriented:

mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
a__add(0, X) → mark(X)
mark(dbl(X)) → a__dbl(mark(X))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
mark(0) → 0
mark(nil) → nil
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__first(X1, X2) → first(X1, X2)
a__dbl(X) → dbl(X)
a__add(X1, X2) → add(X1, X2)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__TERMS(N) → A__SQR(mark(N))
A__TERMS(N) → MARK(N)
A__SQR(s(X)) → A__ADD(a__sqr(mark(X)), a__dbl(mark(X)))
A__SQR(s(X)) → A__SQR(mark(X))
A__SQR(s(X)) → MARK(X)
A__SQR(s(X)) → A__DBL(mark(X))
A__DBL(s(X)) → A__DBL(mark(X))
A__DBL(s(X)) → MARK(X)
A__ADD(0, X) → MARK(X)
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
A__ADD(s(X), Y) → MARK(X)
A__ADD(s(X), Y) → MARK(Y)
MARK(terms(X)) → A__TERMS(mark(X))
MARK(terms(X)) → MARK(X)
MARK(sqr(X)) → A__SQR(mark(X))
MARK(sqr(X)) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
MARK(add(X1, X2)) → MARK(X1)
MARK(add(X1, X2)) → MARK(X2)
MARK(dbl(X)) → A__DBL(mark(X))
MARK(dbl(X)) → MARK(X)
MARK(first(X1, X2)) → A__FIRST(mark(X1), mark(X2))
MARK(first(X1, X2)) → MARK(X1)
MARK(first(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(recip(X)) → MARK(X)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__SQR(s(X)) → A__ADD(a__sqr(mark(X)), a__dbl(mark(X)))
A__ADD(0, X) → MARK(X)
MARK(terms(X)) → A__TERMS(mark(X))
A__TERMS(N) → A__SQR(mark(N))
A__SQR(s(X)) → A__SQR(mark(X))
A__SQR(s(X)) → MARK(X)
MARK(terms(X)) → MARK(X)
MARK(sqr(X)) → A__SQR(mark(X))
A__SQR(s(X)) → A__DBL(mark(X))
A__DBL(s(X)) → A__DBL(mark(X))
A__DBL(s(X)) → MARK(X)
MARK(sqr(X)) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
A__ADD(s(X), Y) → MARK(X)
MARK(add(X1, X2)) → MARK(X1)
MARK(add(X1, X2)) → MARK(X2)
MARK(dbl(X)) → A__DBL(mark(X))
MARK(dbl(X)) → MARK(X)
MARK(first(X1, X2)) → MARK(X1)
MARK(first(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(recip(X)) → MARK(X)
MARK(s(X)) → MARK(X)
A__ADD(s(X), Y) → MARK(Y)
A__TERMS(N) → MARK(N)

The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(terms(X)) → MARK(X)
A__TERMS(N) → MARK(N)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(A__SQR(x1)) = 3A + 0A·x1

POL(s(x1)) = -I + 0A·x1

POL(A__ADD(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(a__sqr(x1)) = 3A + 0A·x1

POL(mark(x1)) = -I + 0A·x1

POL(a__dbl(x1)) = 3A + 0A·x1

POL(0) = 0A

POL(MARK(x1)) = 0A + 0A·x1

POL(terms(x1)) = 3A + 1A·x1

POL(A__TERMS(x1)) = 3A + 1A·x1

POL(sqr(x1)) = 3A + 0A·x1

POL(A__DBL(x1)) = 3A + 0A·x1

POL(add(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(dbl(x1)) = 3A + 0A·x1

POL(first(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(cons(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(recip(x1)) = -I + 0A·x1

POL(a__add(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(a__terms(x1)) = 3A + 1A·x1

POL(a__first(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(nil) = 0A

The following usable rules [FROCOS05] were oriented:

mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
a__add(0, X) → mark(X)
mark(dbl(X)) → a__dbl(mark(X))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
mark(0) → 0
mark(nil) → nil
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__first(X1, X2) → first(X1, X2)
a__dbl(X) → dbl(X)
a__add(X1, X2) → add(X1, X2)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__SQR(s(X)) → A__ADD(a__sqr(mark(X)), a__dbl(mark(X)))
A__ADD(0, X) → MARK(X)
MARK(terms(X)) → A__TERMS(mark(X))
A__TERMS(N) → A__SQR(mark(N))
A__SQR(s(X)) → A__SQR(mark(X))
A__SQR(s(X)) → MARK(X)
MARK(sqr(X)) → A__SQR(mark(X))
A__SQR(s(X)) → A__DBL(mark(X))
A__DBL(s(X)) → A__DBL(mark(X))
A__DBL(s(X)) → MARK(X)
MARK(sqr(X)) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
A__ADD(s(X), Y) → MARK(X)
MARK(add(X1, X2)) → MARK(X1)
MARK(add(X1, X2)) → MARK(X2)
MARK(dbl(X)) → A__DBL(mark(X))
MARK(dbl(X)) → MARK(X)
MARK(first(X1, X2)) → MARK(X1)
MARK(first(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(recip(X)) → MARK(X)
MARK(s(X)) → MARK(X)
A__ADD(s(X), Y) → MARK(Y)

The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(terms(X)) → A__TERMS(mark(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(A__SQR(x1)) = -I + 0A·x1

POL(s(x1)) = 0A + 0A·x1

POL(A__ADD(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(a__sqr(x1)) = 0A + 0A·x1

POL(mark(x1)) = 0A + 0A·x1

POL(a__dbl(x1)) = 0A + 0A·x1

POL(0) = 0A

POL(MARK(x1)) = 0A + 0A·x1

POL(terms(x1)) = 4A + 4A·x1

POL(A__TERMS(x1)) = 0A + 3A·x1

POL(sqr(x1)) = -I + 0A·x1

POL(A__DBL(x1)) = 0A + 0A·x1

POL(add(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(dbl(x1)) = -I + 0A·x1

POL(first(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(cons(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(recip(x1)) = -I + 0A·x1

POL(a__add(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(a__terms(x1)) = 4A + 4A·x1

POL(a__first(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(nil) = 0A

The following usable rules [FROCOS05] were oriented:

mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
a__add(0, X) → mark(X)
mark(dbl(X)) → a__dbl(mark(X))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
mark(0) → 0
mark(nil) → nil
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__first(X1, X2) → first(X1, X2)
a__dbl(X) → dbl(X)
a__add(X1, X2) → add(X1, X2)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__SQR(s(X)) → A__ADD(a__sqr(mark(X)), a__dbl(mark(X)))
A__ADD(0, X) → MARK(X)
A__TERMS(N) → A__SQR(mark(N))
A__SQR(s(X)) → A__SQR(mark(X))
A__SQR(s(X)) → MARK(X)
MARK(sqr(X)) → A__SQR(mark(X))
A__SQR(s(X)) → A__DBL(mark(X))
A__DBL(s(X)) → A__DBL(mark(X))
A__DBL(s(X)) → MARK(X)
MARK(sqr(X)) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
A__ADD(s(X), Y) → MARK(X)
MARK(add(X1, X2)) → MARK(X1)
MARK(add(X1, X2)) → MARK(X2)
MARK(dbl(X)) → A__DBL(mark(X))
MARK(dbl(X)) → MARK(X)
MARK(first(X1, X2)) → MARK(X1)
MARK(first(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(recip(X)) → MARK(X)
MARK(s(X)) → MARK(X)
A__ADD(s(X), Y) → MARK(Y)

The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ADD(0, X) → MARK(X)
MARK(sqr(X)) → A__SQR(mark(X))
A__SQR(s(X)) → A__ADD(a__sqr(mark(X)), a__dbl(mark(X)))
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
A__ADD(s(X), Y) → MARK(X)
MARK(sqr(X)) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
A__ADD(s(X), Y) → MARK(Y)
MARK(add(X1, X2)) → MARK(X1)
MARK(add(X1, X2)) → MARK(X2)
MARK(dbl(X)) → A__DBL(mark(X))
A__DBL(s(X)) → A__DBL(mark(X))
A__DBL(s(X)) → MARK(X)
MARK(dbl(X)) → MARK(X)
MARK(first(X1, X2)) → MARK(X1)
MARK(first(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(recip(X)) → MARK(X)
MARK(s(X)) → MARK(X)
A__SQR(s(X)) → A__SQR(mark(X))
A__SQR(s(X)) → MARK(X)
A__SQR(s(X)) → A__DBL(mark(X))

The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(recip(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(A__ADD(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(0) = 0A

POL(MARK(x1)) = -I + 0A·x1

POL(sqr(x1)) = 0A + 0A·x1

POL(A__SQR(x1)) = -I + 0A·x1

POL(mark(x1)) = -I + 0A·x1

POL(s(x1)) = 0A + 0A·x1

POL(a__sqr(x1)) = 0A + 0A·x1

POL(a__dbl(x1)) = -I + 0A·x1

POL(add(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(dbl(x1)) = -I + 0A·x1

POL(A__DBL(x1)) = -I + 0A·x1

POL(first(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(cons(x1, x2)) = 5A + 0A·x1 + -I·x2

POL(recip(x1)) = -I + 4A·x1

POL(a__add(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(terms(x1)) = 5A + 5A·x1

POL(a__terms(x1)) = 5A + 5A·x1

POL(a__first(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(nil) = 0A

The following usable rules [FROCOS05] were oriented:

mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
a__add(0, X) → mark(X)
mark(dbl(X)) → a__dbl(mark(X))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
mark(0) → 0
mark(nil) → nil
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__first(X1, X2) → first(X1, X2)
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(X) → dbl(X)
a__dbl(0) → 0
a__add(X1, X2) → add(X1, X2)
a__dbl(s(X)) → s(s(a__dbl(mark(X))))

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ADD(0, X) → MARK(X)
MARK(sqr(X)) → A__SQR(mark(X))
A__SQR(s(X)) → A__ADD(a__sqr(mark(X)), a__dbl(mark(X)))
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
A__ADD(s(X), Y) → MARK(X)
MARK(sqr(X)) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
A__ADD(s(X), Y) → MARK(Y)
MARK(add(X1, X2)) → MARK(X1)
MARK(add(X1, X2)) → MARK(X2)
MARK(dbl(X)) → A__DBL(mark(X))
A__DBL(s(X)) → A__DBL(mark(X))
A__DBL(s(X)) → MARK(X)
MARK(dbl(X)) → MARK(X)
MARK(first(X1, X2)) → MARK(X1)
MARK(first(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
A__SQR(s(X)) → A__SQR(mark(X))
A__SQR(s(X)) → MARK(X)
A__SQR(s(X)) → A__DBL(mark(X))

The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(sqr(X)) → MARK(X)
A__SQR(s(X)) → MARK(X)
A__SQR(s(X)) → A__DBL(mark(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(A__ADD(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(0) = 0A

POL(MARK(x1)) = 0A + 0A·x1

POL(sqr(x1)) = 5A + 5A·x1

POL(A__SQR(x1)) = 5A + 5A·x1

POL(mark(x1)) = 0A + 0A·x1

POL(s(x1)) = -I + 0A·x1

POL(a__sqr(x1)) = 5A + 5A·x1

POL(a__dbl(x1)) = 0A + 0A·x1

POL(add(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(dbl(x1)) = -I + 0A·x1

POL(A__DBL(x1)) = 0A + 0A·x1

POL(first(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(cons(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(a__add(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(terms(x1)) = -I + 0A·x1

POL(a__terms(x1)) = 0A + 0A·x1

POL(a__first(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(nil) = 0A

POL(recip(x1)) = 0A + -I·x1

The following usable rules [FROCOS05] were oriented:

mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
a__add(0, X) → mark(X)
mark(dbl(X)) → a__dbl(mark(X))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
mark(0) → 0
mark(nil) → nil
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__first(X1, X2) → first(X1, X2)
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(X) → dbl(X)
a__dbl(0) → 0
a__add(X1, X2) → add(X1, X2)
a__dbl(s(X)) → s(s(a__dbl(mark(X))))

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ADD(0, X) → MARK(X)
MARK(sqr(X)) → A__SQR(mark(X))
A__SQR(s(X)) → A__ADD(a__sqr(mark(X)), a__dbl(mark(X)))
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
A__ADD(s(X), Y) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
A__ADD(s(X), Y) → MARK(Y)
MARK(add(X1, X2)) → MARK(X1)
MARK(add(X1, X2)) → MARK(X2)
MARK(dbl(X)) → A__DBL(mark(X))
A__DBL(s(X)) → A__DBL(mark(X))
A__DBL(s(X)) → MARK(X)
MARK(dbl(X)) → MARK(X)
MARK(first(X1, X2)) → MARK(X1)
MARK(first(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
A__SQR(s(X)) → A__SQR(mark(X))

The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(add(X1, X2)) → MARK(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(A__ADD(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(0) = 0A

POL(MARK(x1)) = 0A + 0A·x1

POL(sqr(x1)) = -I + 1A·x1

POL(A__SQR(x1)) = 0A + 1A·x1

POL(mark(x1)) = -I + 0A·x1

POL(s(x1)) = 0A + 0A·x1

POL(a__sqr(x1)) = -I + 1A·x1

POL(a__dbl(x1)) = 0A + 0A·x1

POL(add(x1, x2)) = 1A + 0A·x1 + 1A·x2

POL(dbl(x1)) = 0A + 0A·x1

POL(A__DBL(x1)) = 0A + 0A·x1

POL(first(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(cons(x1, x2)) = -I + 0A·x1 + -I·x2

POL(a__add(x1, x2)) = 1A + 0A·x1 + 1A·x2

POL(terms(x1)) = -I + 1A·x1

POL(a__terms(x1)) = -I + 1A·x1

POL(a__first(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(nil) = 0A

POL(recip(x1)) = -I + 0A·x1

The following usable rules [FROCOS05] were oriented:

mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
a__add(0, X) → mark(X)
mark(dbl(X)) → a__dbl(mark(X))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
mark(0) → 0
mark(nil) → nil
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__first(X1, X2) → first(X1, X2)
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(X) → dbl(X)
a__dbl(0) → 0
a__add(X1, X2) → add(X1, X2)
a__dbl(s(X)) → s(s(a__dbl(mark(X))))

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ADD(0, X) → MARK(X)
MARK(sqr(X)) → A__SQR(mark(X))
A__SQR(s(X)) → A__ADD(a__sqr(mark(X)), a__dbl(mark(X)))
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
A__ADD(s(X), Y) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
A__ADD(s(X), Y) → MARK(Y)
MARK(add(X1, X2)) → MARK(X1)
MARK(dbl(X)) → A__DBL(mark(X))
A__DBL(s(X)) → A__DBL(mark(X))
A__DBL(s(X)) → MARK(X)
MARK(dbl(X)) → MARK(X)
MARK(first(X1, X2)) → MARK(X1)
MARK(first(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
A__SQR(s(X)) → A__SQR(mark(X))

The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(cons(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(A__ADD(x1, x2)) = 4A + 0A·x1 + 0A·x2

POL(0) = 0A

POL(MARK(x1)) = 4A + 0A·x1

POL(sqr(x1)) = -I + 0A·x1

POL(A__SQR(x1)) = 4A + 0A·x1

POL(mark(x1)) = 0A + 0A·x1

POL(s(x1)) = 0A + 0A·x1

POL(a__sqr(x1)) = 0A + 0A·x1

POL(a__dbl(x1)) = 0A + 0A·x1

POL(add(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(dbl(x1)) = -I + 0A·x1

POL(A__DBL(x1)) = 4A + 0A·x1

POL(first(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(cons(x1, x2)) = 5A + 5A·x1 + 0A·x2

POL(a__add(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(terms(x1)) = 5A + 0A·x1

POL(a__terms(x1)) = 5A + 0A·x1

POL(a__first(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(nil) = 0A

POL(recip(x1)) = 0A + -I·x1

The following usable rules [FROCOS05] were oriented:

mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
a__add(0, X) → mark(X)
mark(dbl(X)) → a__dbl(mark(X))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
mark(0) → 0
mark(nil) → nil
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__first(X1, X2) → first(X1, X2)
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(X) → dbl(X)
a__dbl(0) → 0
a__add(X1, X2) → add(X1, X2)
a__dbl(s(X)) → s(s(a__dbl(mark(X))))

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ADD(0, X) → MARK(X)
MARK(sqr(X)) → A__SQR(mark(X))
A__SQR(s(X)) → A__ADD(a__sqr(mark(X)), a__dbl(mark(X)))
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
A__ADD(s(X), Y) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
A__ADD(s(X), Y) → MARK(Y)
MARK(add(X1, X2)) → MARK(X1)
MARK(dbl(X)) → A__DBL(mark(X))
A__DBL(s(X)) → A__DBL(mark(X))
A__DBL(s(X)) → MARK(X)
MARK(dbl(X)) → MARK(X)
MARK(first(X1, X2)) → MARK(X1)
MARK(first(X1, X2)) → MARK(X2)
MARK(s(X)) → MARK(X)
A__SQR(s(X)) → A__SQR(mark(X))

The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(first(X1, X2)) → MARK(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(A__ADD(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(0) = 1A

POL(MARK(x1)) = 0A + 0A·x1

POL(sqr(x1)) = -I + 0A·x1

POL(A__SQR(x1)) = -I + 0A·x1

POL(mark(x1)) = 0A + 0A·x1

POL(s(x1)) = 0A + 0A·x1

POL(a__sqr(x1)) = 0A + 0A·x1

POL(a__dbl(x1)) = 0A + 0A·x1

POL(add(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(dbl(x1)) = -I + 0A·x1

POL(A__DBL(x1)) = 0A + 0A·x1

POL(first(x1, x2)) = 1A + 0A·x1 + 1A·x2

POL(a__add(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(terms(x1)) = 5A + -I·x1

POL(a__terms(x1)) = 5A + -I·x1

POL(a__first(x1, x2)) = 1A + 0A·x1 + 1A·x2

POL(nil) = 0A

POL(cons(x1, x2)) = 0A + -I·x1 + -I·x2

POL(recip(x1)) = 0A + -I·x1

The following usable rules [FROCOS05] were oriented:

mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
a__add(0, X) → mark(X)
mark(dbl(X)) → a__dbl(mark(X))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
mark(0) → 0
mark(nil) → nil
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__first(X1, X2) → first(X1, X2)
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(X) → dbl(X)
a__dbl(0) → 0
a__add(X1, X2) → add(X1, X2)
a__dbl(s(X)) → s(s(a__dbl(mark(X))))

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ADD(0, X) → MARK(X)
MARK(sqr(X)) → A__SQR(mark(X))
A__SQR(s(X)) → A__ADD(a__sqr(mark(X)), a__dbl(mark(X)))
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
A__ADD(s(X), Y) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
A__ADD(s(X), Y) → MARK(Y)
MARK(add(X1, X2)) → MARK(X1)
MARK(dbl(X)) → A__DBL(mark(X))
A__DBL(s(X)) → A__DBL(mark(X))
A__DBL(s(X)) → MARK(X)
MARK(dbl(X)) → MARK(X)
MARK(first(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
A__SQR(s(X)) → A__SQR(mark(X))

The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(first(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(A__ADD(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(0) = 5A

POL(MARK(x1)) = 0A + 0A·x1

POL(sqr(x1)) = -I + 5A·x1

POL(A__SQR(x1)) = 0A + 5A·x1

POL(mark(x1)) = -I + 0A·x1

POL(s(x1)) = 0A + 0A·x1

POL(a__sqr(x1)) = -I + 5A·x1

POL(a__dbl(x1)) = 5A + 0A·x1

POL(add(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(dbl(x1)) = 5A + 0A·x1

POL(A__DBL(x1)) = 5A + 0A·x1

POL(first(x1, x2)) = 1A + 1A·x1 + -I·x2

POL(a__add(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(terms(x1)) = 0A + -I·x1

POL(a__terms(x1)) = 0A + -I·x1

POL(a__first(x1, x2)) = 1A + 1A·x1 + -I·x2

POL(nil) = 0A

POL(cons(x1, x2)) = 0A + -I·x1 + -I·x2

POL(recip(x1)) = 2A + -I·x1

The following usable rules [FROCOS05] were oriented:

mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
a__add(0, X) → mark(X)
mark(dbl(X)) → a__dbl(mark(X))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
mark(0) → 0
mark(nil) → nil
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__first(X1, X2) → first(X1, X2)
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(X) → dbl(X)
a__dbl(0) → 0
a__add(X1, X2) → add(X1, X2)
a__dbl(s(X)) → s(s(a__dbl(mark(X))))

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ADD(0, X) → MARK(X)
MARK(sqr(X)) → A__SQR(mark(X))
A__SQR(s(X)) → A__ADD(a__sqr(mark(X)), a__dbl(mark(X)))
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
A__ADD(s(X), Y) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
A__ADD(s(X), Y) → MARK(Y)
MARK(add(X1, X2)) → MARK(X1)
MARK(dbl(X)) → A__DBL(mark(X))
A__DBL(s(X)) → A__DBL(mark(X))
A__DBL(s(X)) → MARK(X)
MARK(dbl(X)) → MARK(X)
MARK(s(X)) → MARK(X)
A__SQR(s(X)) → A__SQR(mark(X))

The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(dbl(X)) → A__DBL(mark(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(A__ADD(x1, x2)) = 5A + 0A·x1 + 0A·x2

POL(0) = 0A

POL(MARK(x1)) = 0A + 0A·x1

POL(sqr(x1)) = -I + 5A·x1

POL(A__SQR(x1)) = 0A + 5A·x1

POL(mark(x1)) = -I + 0A·x1

POL(s(x1)) = 0A + 0A·x1

POL(a__sqr(x1)) = -I + 5A·x1

POL(a__dbl(x1)) = 0A + 5A·x1

POL(add(x1, x2)) = 5A + 0A·x1 + 0A·x2

POL(dbl(x1)) = 0A + 5A·x1

POL(A__DBL(x1)) = -I + 0A·x1

POL(a__add(x1, x2)) = 5A + 0A·x1 + 0A·x2

POL(terms(x1)) = 0A + 0A·x1

POL(a__terms(x1)) = 0A + 0A·x1

POL(a__first(x1, x2)) = -I + 0A·x1 + -I·x2

POL(nil) = 0A

POL(cons(x1, x2)) = -I + -I·x1 + 0A·x2

POL(first(x1, x2)) = -I + 0A·x1 + -I·x2

POL(recip(x1)) = 0A + -I·x1

The following usable rules [FROCOS05] were oriented:

mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
a__add(0, X) → mark(X)
mark(dbl(X)) → a__dbl(mark(X))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
mark(0) → 0
mark(nil) → nil
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__first(X1, X2) → first(X1, X2)
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(X) → dbl(X)
a__dbl(0) → 0
a__add(X1, X2) → add(X1, X2)
a__dbl(s(X)) → s(s(a__dbl(mark(X))))

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ADD(0, X) → MARK(X)
MARK(sqr(X)) → A__SQR(mark(X))
A__SQR(s(X)) → A__ADD(a__sqr(mark(X)), a__dbl(mark(X)))
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
A__ADD(s(X), Y) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
A__ADD(s(X), Y) → MARK(Y)
MARK(add(X1, X2)) → MARK(X1)
A__DBL(s(X)) → A__DBL(mark(X))
A__DBL(s(X)) → MARK(X)
MARK(dbl(X)) → MARK(X)
MARK(s(X)) → MARK(X)
A__SQR(s(X)) → A__SQR(mark(X))

The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.

(28) Complex Obligation (AND)

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(sqr(X)) → A__SQR(mark(X))
A__SQR(s(X)) → A__ADD(a__sqr(mark(X)), a__dbl(mark(X)))
A__ADD(0, X) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
A__ADD(s(X), Y) → MARK(X)
MARK(add(X1, X2)) → MARK(X1)
MARK(dbl(X)) → MARK(X)
MARK(s(X)) → MARK(X)
A__ADD(s(X), Y) → MARK(Y)
A__SQR(s(X)) → A__SQR(mark(X))

The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__ADD(s(X), Y) → MARK(Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(MARK(x1)) = 0A + 0A·x1

POL(sqr(x1)) = 1A + 1A·x1

POL(A__SQR(x1)) = -I + 1A·x1

POL(mark(x1)) = 0A + 0A·x1

POL(s(x1)) = 1A + 0A·x1

POL(A__ADD(x1, x2)) = 0A + 0A·x1 + 1A·x2

POL(a__sqr(x1)) = 1A + 1A·x1

POL(a__dbl(x1)) = 0A + 0A·x1

POL(0) = 0A

POL(add(x1, x2)) = 1A + 0A·x1 + 1A·x2

POL(dbl(x1)) = 0A + 0A·x1

POL(a__add(x1, x2)) = 1A + 0A·x1 + 1A·x2

POL(terms(x1)) = 0A + -I·x1

POL(a__terms(x1)) = 0A + -I·x1

POL(a__first(x1, x2)) = 3A + 0A·x1 + -I·x2

POL(nil) = 0A

POL(cons(x1, x2)) = 0A + -I·x1 + -I·x2

POL(first(x1, x2)) = 3A + 0A·x1 + -I·x2

POL(recip(x1)) = 0A + 0A·x1

The following usable rules [FROCOS05] were oriented:

mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
a__add(0, X) → mark(X)
mark(dbl(X)) → a__dbl(mark(X))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
mark(0) → 0
mark(nil) → nil
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__first(X1, X2) → first(X1, X2)
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(X) → dbl(X)
a__dbl(0) → 0
a__add(X1, X2) → add(X1, X2)
a__dbl(s(X)) → s(s(a__dbl(mark(X))))

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(sqr(X)) → A__SQR(mark(X))
A__SQR(s(X)) → A__ADD(a__sqr(mark(X)), a__dbl(mark(X)))
A__ADD(0, X) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
A__ADD(s(X), Y) → MARK(X)
MARK(add(X1, X2)) → MARK(X1)
MARK(dbl(X)) → MARK(X)
MARK(s(X)) → MARK(X)
A__SQR(s(X)) → A__SQR(mark(X))

The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__ADD(0, X) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(MARK(x1)) = 0A + 0A·x1

POL(sqr(x1)) = -I + 1A·x1

POL(A__SQR(x1)) = 0A + 1A·x1

POL(mark(x1)) = -I + 0A·x1

POL(s(x1)) = -I + 0A·x1

POL(A__ADD(x1, x2)) = 0A + 0A·x1 + 1A·x2

POL(a__sqr(x1)) = -I + 1A·x1

POL(a__dbl(x1)) = -I + 0A·x1

POL(0) = 1A

POL(add(x1, x2)) = -I + 0A·x1 + 1A·x2

POL(dbl(x1)) = -I + 0A·x1

POL(a__add(x1, x2)) = -I + 0A·x1 + 1A·x2

POL(terms(x1)) = -I + 0A·x1

POL(a__terms(x1)) = -I + 0A·x1

POL(a__first(x1, x2)) = 0A + -I·x1 + -I·x2

POL(nil) = 0A

POL(cons(x1, x2)) = -I + -I·x1 + 0A·x2

POL(first(x1, x2)) = 0A + -I·x1 + -I·x2

POL(recip(x1)) = 0A + -I·x1

The following usable rules [FROCOS05] were oriented:

mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
a__add(0, X) → mark(X)
mark(dbl(X)) → a__dbl(mark(X))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
mark(0) → 0
mark(nil) → nil
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__first(X1, X2) → first(X1, X2)
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(X) → dbl(X)
a__dbl(0) → 0
a__add(X1, X2) → add(X1, X2)
a__dbl(s(X)) → s(s(a__dbl(mark(X))))

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(sqr(X)) → A__SQR(mark(X))
A__SQR(s(X)) → A__ADD(a__sqr(mark(X)), a__dbl(mark(X)))
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
A__ADD(s(X), Y) → MARK(X)
MARK(add(X1, X2)) → MARK(X1)
MARK(dbl(X)) → MARK(X)
MARK(s(X)) → MARK(X)
A__SQR(s(X)) → A__SQR(mark(X))

The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(dbl(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(MARK(x1)) = 0A + 0A·x1

POL(sqr(x1)) = 1A + 1A·x1

POL(A__SQR(x1)) = 1A + 1A·x1

POL(mark(x1)) = 0A + 0A·x1

POL(s(x1)) = -I + 0A·x1

POL(A__ADD(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(a__sqr(x1)) = 1A + 1A·x1

POL(a__dbl(x1)) = 1A + 1A·x1

POL(add(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(dbl(x1)) = 1A + 1A·x1

POL(a__add(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(0) = 1A

POL(terms(x1)) = 0A + -I·x1

POL(a__terms(x1)) = 0A + -I·x1

POL(a__first(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(nil) = 1A

POL(cons(x1, x2)) = 0A + -I·x1 + -I·x2

POL(first(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(recip(x1)) = 5A + -I·x1

The following usable rules [FROCOS05] were oriented:

mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
a__add(0, X) → mark(X)
mark(dbl(X)) → a__dbl(mark(X))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
mark(0) → 0
mark(nil) → nil
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__first(X1, X2) → first(X1, X2)
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(X) → dbl(X)
a__dbl(0) → 0
a__add(X1, X2) → add(X1, X2)
a__dbl(s(X)) → s(s(a__dbl(mark(X))))

(35) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(sqr(X)) → A__SQR(mark(X))
A__SQR(s(X)) → A__ADD(a__sqr(mark(X)), a__dbl(mark(X)))
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
A__ADD(s(X), Y) → MARK(X)
MARK(add(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
A__SQR(s(X)) → A__SQR(mark(X))

The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(sqr(X)) → A__SQR(mark(X))
A__SQR(s(X)) → A__ADD(a__sqr(mark(X)), a__dbl(mark(X)))
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
A__ADD(s(X), Y) → MARK(X)
MARK(add(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
A__SQR(s(X)) → A__SQR(mark(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
sqr(x1)  =  sqr(x1)
A__SQR(x1)  =  A__SQR(x1)
mark(x1)  =  x1
s(x1)  =  s(x1)
A__ADD(x1, x2)  =  A__ADD(x1, x2)
a__sqr(x1)  =  a__sqr(x1)
a__dbl(x1)  =  a__dbl(x1)
add(x1, x2)  =  add(x1, x2)
a__add(x1, x2)  =  a__add(x1, x2)
0  =  0
dbl(x1)  =  dbl(x1)
terms(x1)  =  terms
a__terms(x1)  =  a__terms
a__first(x1, x2)  =  a__first(x1, x2)
nil  =  nil
cons(x1, x2)  =  x1
first(x1, x2)  =  first(x1, x2)
recip(x1)  =  recip

Recursive path order with status [RPO].
Quasi-Precedence:
[sqr1, ASQR1, asqr1, 0] > [MARK1, AADD2]
[sqr1, ASQR1, asqr1, 0] > [adbl1, dbl1] > s1 > [afirst2, first2]
[sqr1, ASQR1, asqr1, 0] > [add2, aadd2] > s1 > [afirst2, first2]
[sqr1, ASQR1, asqr1, 0] > nil
[terms, aterms] > recip

Status:
sqr1: [1]
aterms: multiset
adbl1: multiset
aadd2: multiset
recip: []
0: multiset
first2: multiset
afirst2: multiset
add2: multiset
MARK1: multiset
AADD2: multiset
dbl1: multiset
s1: [1]
ASQR1: [1]
nil: multiset
asqr1: [1]
terms: multiset


The following usable rules [FROCOS05] were oriented:

mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
a__add(0, X) → mark(X)
mark(dbl(X)) → a__dbl(mark(X))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
mark(0) → 0
mark(nil) → nil
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__first(X1, X2) → first(X1, X2)
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(X) → dbl(X)
a__dbl(0) → 0
a__add(X1, X2) → add(X1, X2)
a__dbl(s(X)) → s(s(a__dbl(mark(X))))

(37) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(39) TRUE

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__DBL(s(X)) → A__DBL(mark(X))

The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__DBL(s(X)) → A__DBL(mark(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__DBL(x1)  =  A__DBL(x1)
s(x1)  =  s(x1)
mark(x1)  =  x1
add(x1, x2)  =  add(x1, x2)
a__add(x1, x2)  =  a__add(x1, x2)
0  =  0
dbl(x1)  =  dbl(x1)
a__dbl(x1)  =  a__dbl(x1)
terms(x1)  =  terms(x1)
a__terms(x1)  =  a__terms(x1)
sqr(x1)  =  sqr(x1)
a__sqr(x1)  =  a__sqr(x1)
a__first(x1, x2)  =  x2
nil  =  nil
cons(x1, x2)  =  x1
first(x1, x2)  =  x2
recip(x1)  =  recip

Recursive path order with status [RPO].
Quasi-Precedence:
[0, dbl1, adbl1, sqr1, asqr1] > [add2, aadd2] > s1 > ADBL1 > nil
[terms1, aterms1] > s1 > ADBL1 > nil
[terms1, aterms1] > recip > nil

Status:
sqr1: [1]
adbl1: [1]
aadd2: multiset
recip: []
0: multiset
terms1: multiset
add2: multiset
ADBL1: multiset
aterms1: multiset
dbl1: [1]
s1: [1]
nil: multiset
asqr1: [1]


The following usable rules [FROCOS05] were oriented:

mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
a__add(0, X) → mark(X)
mark(dbl(X)) → a__dbl(mark(X))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
mark(0) → 0
mark(nil) → nil
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__first(X1, X2) → first(X1, X2)
a__dbl(X) → dbl(X)
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(X1, X2) → add(X1, X2)

(42) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(44) TRUE