(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s) → s
dbl(0) → 0
dbl(s) → s
add(0, X) → X
add(s, Y) → s
first(0, X) → nil
first(s, cons(Y)) → cons(Y)
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Lexicographic path order with status [LPO].
Precedence:
terms1 > cons1 > recip1
terms1 > sqr1 > 0 > recip1
dbl1 > 0 > recip1
dbl1 > s > recip1
add2 > s > recip1
first2 > nil > recip1
Status:
add2: [1,2]
cons1: [1]
sqr1: [1]
dbl1: [1]
s: []
0: []
first2: [1,2]
terms1: [1]
nil: []
recip1: [1]
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s) → s
dbl(0) → 0
dbl(s) → s
add(0, X) → X
add(s, Y) → s
first(0, X) → nil
first(s, cons(Y)) → cons(Y)
(2) Obligation:
Q restricted rewrite system:
R is empty.
Q is empty.
(3) RisEmptyProof (EQUIVALENT transformation)
The TRS R is empty. Hence, termination is trivially proven.
(4) TRUE