(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(f(X))) → MARK(c(f(g(f(X)))))
ACTIVE(f(f(X))) → C(f(g(f(X))))
ACTIVE(f(f(X))) → F(g(f(X)))
ACTIVE(f(f(X))) → G(f(X))
ACTIVE(c(X)) → MARK(d(X))
ACTIVE(c(X)) → D(X)
ACTIVE(h(X)) → MARK(c(d(X)))
ACTIVE(h(X)) → C(d(X))
ACTIVE(h(X)) → D(X)
MARK(f(X)) → ACTIVE(f(mark(X)))
MARK(f(X)) → F(mark(X))
MARK(f(X)) → MARK(X)
MARK(c(X)) → ACTIVE(c(X))
MARK(g(X)) → ACTIVE(g(X))
MARK(d(X)) → ACTIVE(d(X))
MARK(h(X)) → ACTIVE(h(mark(X)))
MARK(h(X)) → H(mark(X))
MARK(h(X)) → MARK(X)
F(mark(X)) → F(X)
F(active(X)) → F(X)
C(mark(X)) → C(X)
C(active(X)) → C(X)
G(mark(X)) → G(X)
G(active(X)) → G(X)
D(mark(X)) → D(X)
D(active(X)) → D(X)
H(mark(X)) → H(X)
H(active(X)) → H(X)

The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 6 SCCs with 8 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

H(active(X)) → H(X)
H(mark(X)) → H(X)

The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


H(active(X)) → H(X)
H(mark(X)) → H(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
H(x1)  =  H(x1)
active(x1)  =  active(x1)
mark(x1)  =  mark(x1)
f(x1)  =  f
c(x1)  =  x1
g(x1)  =  x1
d(x1)  =  d
h(x1)  =  h

Recursive path order with status [RPO].
Quasi-Precedence:
H1 > d
h > [active1, mark1, f] > d

Status:
H1: multiset
active1: [1]
mark1: [1]
f: []
d: multiset
h: []


The following usable rules [FROCOS05] were oriented:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

D(active(X)) → D(X)
D(mark(X)) → D(X)

The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


D(active(X)) → D(X)
D(mark(X)) → D(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
D(x1)  =  D(x1)
active(x1)  =  active(x1)
mark(x1)  =  mark(x1)
f(x1)  =  f
c(x1)  =  x1
g(x1)  =  x1
d(x1)  =  d
h(x1)  =  h

Recursive path order with status [RPO].
Quasi-Precedence:
D1 > d
h > [active1, mark1, f] > d

Status:
D1: multiset
active1: [1]
mark1: [1]
f: []
d: multiset
h: []


The following usable rules [FROCOS05] were oriented:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(active(X)) → G(X)
G(mark(X)) → G(X)

The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(active(X)) → G(X)
G(mark(X)) → G(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
G(x1)  =  G(x1)
active(x1)  =  active(x1)
mark(x1)  =  mark(x1)
f(x1)  =  f
c(x1)  =  x1
g(x1)  =  x1
d(x1)  =  d
h(x1)  =  h

Recursive path order with status [RPO].
Quasi-Precedence:
G1 > d
h > [active1, mark1, f] > d

Status:
G1: multiset
active1: [1]
mark1: [1]
f: []
d: multiset
h: []


The following usable rules [FROCOS05] were oriented:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

C(active(X)) → C(X)
C(mark(X)) → C(X)

The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


C(active(X)) → C(X)
C(mark(X)) → C(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
C(x1)  =  C(x1)
active(x1)  =  active(x1)
mark(x1)  =  mark(x1)
f(x1)  =  f
c(x1)  =  x1
g(x1)  =  x1
d(x1)  =  d
h(x1)  =  h

Recursive path order with status [RPO].
Quasi-Precedence:
C1 > d
h > [active1, mark1, f] > d

Status:
C1: multiset
active1: [1]
mark1: [1]
f: []
d: multiset
h: []


The following usable rules [FROCOS05] were oriented:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

(22) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(24) TRUE

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(active(X)) → F(X)
F(mark(X)) → F(X)

The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(active(X)) → F(X)
F(mark(X)) → F(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(x1)  =  F(x1)
active(x1)  =  active(x1)
mark(x1)  =  mark(x1)
f(x1)  =  f
c(x1)  =  x1
g(x1)  =  x1
d(x1)  =  d
h(x1)  =  h

Recursive path order with status [RPO].
Quasi-Precedence:
F1 > d
h > [active1, mark1, f] > d

Status:
F1: multiset
active1: [1]
mark1: [1]
f: []
d: multiset
h: []


The following usable rules [FROCOS05] were oriented:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

(27) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(29) TRUE

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(f(X))) → MARK(c(f(g(f(X)))))
MARK(f(X)) → MARK(X)
MARK(c(X)) → ACTIVE(c(X))
ACTIVE(c(X)) → MARK(d(X))
MARK(g(X)) → ACTIVE(g(X))
ACTIVE(h(X)) → MARK(c(d(X)))
MARK(d(X)) → ACTIVE(d(X))
MARK(h(X)) → ACTIVE(h(mark(X)))
MARK(h(X)) → MARK(X)

The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(f(f(X))) → MARK(c(f(g(f(X)))))
MARK(f(X)) → MARK(X)
ACTIVE(c(X)) → MARK(d(X))
ACTIVE(h(X)) → MARK(c(d(X)))
MARK(h(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
f(x1)  =  f(x1)
ACTIVE(x1)  =  x1
mark(x1)  =  x1
c(x1)  =  c
g(x1)  =  g
d(x1)  =  d
h(x1)  =  h(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[f1, c, g, h1] > d

Status:
f1: multiset
c: multiset
g: multiset
d: []
h1: multiset


The following usable rules [FROCOS05] were oriented:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X)) → ACTIVE(f(mark(X)))
MARK(c(X)) → ACTIVE(c(X))
MARK(g(X)) → ACTIVE(g(X))
MARK(d(X)) → ACTIVE(d(X))
MARK(h(X)) → ACTIVE(h(mark(X)))

The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 5 less nodes.

(34) TRUE