(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(b, X, c)) → mark(f(X, c, X))
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, mark(X2), X3))
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(b, X, c)) → MARK(f(X, c, X))
ACTIVE(f(b, X, c)) → F(X, c, X)
ACTIVE(c) → MARK(b)
MARK(f(X1, X2, X3)) → ACTIVE(f(X1, mark(X2), X3))
MARK(f(X1, X2, X3)) → F(X1, mark(X2), X3)
MARK(f(X1, X2, X3)) → MARK(X2)
MARK(b) → ACTIVE(b)
MARK(c) → ACTIVE(c)
F(mark(X1), X2, X3) → F(X1, X2, X3)
F(X1, mark(X2), X3) → F(X1, X2, X3)
F(X1, X2, mark(X3)) → F(X1, X2, X3)
F(active(X1), X2, X3) → F(X1, X2, X3)
F(X1, active(X2), X3) → F(X1, X2, X3)
F(X1, X2, active(X3)) → F(X1, X2, X3)

The TRS R consists of the following rules:

active(f(b, X, c)) → mark(f(X, c, X))
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, mark(X2), X3))
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 5 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(X1, mark(X2), X3) → F(X1, X2, X3)
F(mark(X1), X2, X3) → F(X1, X2, X3)
F(X1, X2, mark(X3)) → F(X1, X2, X3)
F(active(X1), X2, X3) → F(X1, X2, X3)
F(X1, active(X2), X3) → F(X1, X2, X3)
F(X1, X2, active(X3)) → F(X1, X2, X3)

The TRS R consists of the following rules:

active(f(b, X, c)) → mark(f(X, c, X))
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, mark(X2), X3))
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(X1, mark(X2), X3) → F(X1, X2, X3)
F(X1, X2, mark(X3)) → F(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(x1, x2, x3)  =  F(x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
mark1 > F2

Status:
mark1: [1]
F2: [2,1]


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(mark(X1), X2, X3) → F(X1, X2, X3)
F(active(X1), X2, X3) → F(X1, X2, X3)
F(X1, active(X2), X3) → F(X1, X2, X3)
F(X1, X2, active(X3)) → F(X1, X2, X3)

The TRS R consists of the following rules:

active(f(b, X, c)) → mark(f(X, c, X))
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, mark(X2), X3))
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(mark(X1), X2, X3) → F(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(x1, x2, x3)  =  F(x1, x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[F3, mark1]

Status:
mark1: [1]
F3: [3,2,1]


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(active(X1), X2, X3) → F(X1, X2, X3)
F(X1, active(X2), X3) → F(X1, X2, X3)
F(X1, X2, active(X3)) → F(X1, X2, X3)

The TRS R consists of the following rules:

active(f(b, X, c)) → mark(f(X, c, X))
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, mark(X2), X3))
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(X1, X2, active(X3)) → F(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(x1, x2, x3)  =  F(x3)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > F1

Status:
active1: [1]
F1: [1]


The following usable rules [FROCOS05] were oriented: none

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(active(X1), X2, X3) → F(X1, X2, X3)
F(X1, active(X2), X3) → F(X1, X2, X3)

The TRS R consists of the following rules:

active(f(b, X, c)) → mark(f(X, c, X))
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, mark(X2), X3))
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(active(X1), X2, X3) → F(X1, X2, X3)
F(X1, active(X2), X3) → F(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[F3, active1]

Status:
active1: [1]
F3: [3,2,1]


The following usable rules [FROCOS05] were oriented: none

(13) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(b, X, c)) → mark(f(X, c, X))
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, mark(X2), X3))
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(15) TRUE

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X1, X2, X3)) → ACTIVE(f(X1, mark(X2), X3))
ACTIVE(f(b, X, c)) → MARK(f(X, c, X))
MARK(f(X1, X2, X3)) → MARK(X2)

The TRS R consists of the following rules:

active(f(b, X, c)) → mark(f(X, c, X))
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, mark(X2), X3))
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(f(X1, X2, X3)) → MARK(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
f(x1, x2, x3)  =  f(x2)
ACTIVE(x1)  =  ACTIVE(x1)
mark(x1)  =  x1
b  =  b
c  =  c
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
f1 > [MARK1, ACTIVE1] > [b, c]

Status:
c: []
MARK1: [1]
f1: [1]
b: []
ACTIVE1: [1]


The following usable rules [FROCOS05] were oriented:

mark(f(X1, X2, X3)) → active(f(X1, mark(X2), X3))
active(f(b, X, c)) → mark(f(X, c, X))
active(c) → mark(b)
mark(b) → active(b)
mark(c) → active(c)
f(X1, X2, active(X3)) → f(X1, X2, X3)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X1, X2, X3)) → ACTIVE(f(X1, mark(X2), X3))
ACTIVE(f(b, X, c)) → MARK(f(X, c, X))

The TRS R consists of the following rules:

active(f(b, X, c)) → mark(f(X, c, X))
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, mark(X2), X3))
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.