0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 AND
↳5 QDP
↳6 QDP
↳7 QDPOrderProof (⇔)
↳8 QDP
↳9 PisEmptyProof (⇔)
↳10 TRUE
a__f(b, X, c) → a__f(X, a__c, X)
a__c → b
mark(f(X1, X2, X3)) → a__f(X1, mark(X2), X3)
mark(c) → a__c
mark(b) → b
a__f(X1, X2, X3) → f(X1, X2, X3)
a__c → c
A__F(b, X, c) → A__F(X, a__c, X)
A__F(b, X, c) → A__C
MARK(f(X1, X2, X3)) → A__F(X1, mark(X2), X3)
MARK(f(X1, X2, X3)) → MARK(X2)
MARK(c) → A__C
a__f(b, X, c) → a__f(X, a__c, X)
a__c → b
mark(f(X1, X2, X3)) → a__f(X1, mark(X2), X3)
mark(c) → a__c
mark(b) → b
a__f(X1, X2, X3) → f(X1, X2, X3)
a__c → c
A__F(b, X, c) → A__F(X, a__c, X)
a__f(b, X, c) → a__f(X, a__c, X)
a__c → b
mark(f(X1, X2, X3)) → a__f(X1, mark(X2), X3)
mark(c) → a__c
mark(b) → b
a__f(X1, X2, X3) → f(X1, X2, X3)
a__c → c
MARK(f(X1, X2, X3)) → MARK(X2)
a__f(b, X, c) → a__f(X, a__c, X)
a__c → b
mark(f(X1, X2, X3)) → a__f(X1, mark(X2), X3)
mark(c) → a__c
mark(b) → b
a__f(X1, X2, X3) → f(X1, X2, X3)
a__c → c
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(f(X1, X2, X3)) → MARK(X2)
mark1 > [f1, af1] > [MARK1, b, c, ac]
MARK1: multiset
f1: multiset
af1: multiset
b: multiset
c: multiset
ac: multiset
mark1: [1]
a__f(b, X, c) → a__f(X, a__c, X)
a__c → b
mark(f(X1, X2, X3)) → a__f(X1, mark(X2), X3)
mark(c) → a__c
mark(b) → b
a__f(X1, X2, X3) → f(X1, X2, X3)
a__c → c
a__f(b, X, c) → a__f(X, a__c, X)
a__c → b
mark(f(X1, X2, X3)) → a__f(X1, mark(X2), X3)
mark(c) → a__c
mark(b) → b
a__f(X1, X2, X3) → f(X1, X2, X3)
a__c → c