(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(X, n__g(X), Y) → f(activate(Y), activate(Y), activate(Y))
g(b) → c
b → c
g(X) → n__g(X)
activate(n__g(X)) → g(X)
activate(X) → X
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(X, n__g(X), Y) → F(activate(Y), activate(Y), activate(Y))
F(X, n__g(X), Y) → ACTIVATE(Y)
ACTIVATE(n__g(X)) → G(X)
The TRS R consists of the following rules:
f(X, n__g(X), Y) → f(activate(Y), activate(Y), activate(Y))
g(b) → c
b → c
g(X) → n__g(X)
activate(n__g(X)) → g(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(X, n__g(X), Y) → F(activate(Y), activate(Y), activate(Y))
The TRS R consists of the following rules:
f(X, n__g(X), Y) → f(activate(Y), activate(Y), activate(Y))
g(b) → c
b → c
g(X) → n__g(X)
activate(n__g(X)) → g(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.