0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 AND
↳5 QDP
↳6 QDP
↳7 QDPOrderProof (⇔)
↳8 QDP
↳9 PisEmptyProof (⇔)
↳10 TRUE
a__f(X, g(X), Y) → a__f(Y, Y, Y)
a__g(b) → c
a__b → c
mark(f(X1, X2, X3)) → a__f(X1, X2, X3)
mark(g(X)) → a__g(mark(X))
mark(b) → a__b
mark(c) → c
a__f(X1, X2, X3) → f(X1, X2, X3)
a__g(X) → g(X)
a__b → b
A__F(X, g(X), Y) → A__F(Y, Y, Y)
MARK(f(X1, X2, X3)) → A__F(X1, X2, X3)
MARK(g(X)) → A__G(mark(X))
MARK(g(X)) → MARK(X)
MARK(b) → A__B
a__f(X, g(X), Y) → a__f(Y, Y, Y)
a__g(b) → c
a__b → c
mark(f(X1, X2, X3)) → a__f(X1, X2, X3)
mark(g(X)) → a__g(mark(X))
mark(b) → a__b
mark(c) → c
a__f(X1, X2, X3) → f(X1, X2, X3)
a__g(X) → g(X)
a__b → b
A__F(X, g(X), Y) → A__F(Y, Y, Y)
a__f(X, g(X), Y) → a__f(Y, Y, Y)
a__g(b) → c
a__b → c
mark(f(X1, X2, X3)) → a__f(X1, X2, X3)
mark(g(X)) → a__g(mark(X))
mark(b) → a__b
mark(c) → c
a__f(X1, X2, X3) → f(X1, X2, X3)
a__g(X) → g(X)
a__b → b
MARK(g(X)) → MARK(X)
a__f(X, g(X), Y) → a__f(Y, Y, Y)
a__g(b) → c
a__b → c
mark(f(X1, X2, X3)) → a__f(X1, X2, X3)
mark(g(X)) → a__g(mark(X))
mark(b) → a__b
mark(c) → c
a__f(X1, X2, X3) → f(X1, X2, X3)
a__g(X) → g(X)
a__b → b
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(g(X)) → MARK(X)
[g1, ag1, ab, mark1] > MARK1
[g1, ag1, ab, mark1] > b
[g1, ag1, ab, mark1] > c
a__f(X, g(X), Y) → a__f(Y, Y, Y)
a__g(b) → c
a__b → c
mark(f(X1, X2, X3)) → a__f(X1, X2, X3)
mark(g(X)) → a__g(mark(X))
mark(b) → a__b
mark(c) → c
a__f(X1, X2, X3) → f(X1, X2, X3)
a__g(X) → g(X)
a__b → b
a__f(X, g(X), Y) → a__f(Y, Y, Y)
a__g(b) → c
a__b → c
mark(f(X1, X2, X3)) → a__f(X1, X2, X3)
mark(g(X)) → a__g(mark(X))
mark(b) → a__b
mark(c) → c
a__f(X1, X2, X3) → f(X1, X2, X3)
a__g(X) → g(X)
a__b → b