(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(f(a))) → C(f(g(f(a))))
ACTIVE(f(f(a))) → F(g(f(a)))
ACTIVE(f(f(a))) → G(f(a))
ACTIVE(f(X)) → F(active(X))
ACTIVE(f(X)) → ACTIVE(X)
ACTIVE(g(X)) → G(active(X))
ACTIVE(g(X)) → ACTIVE(X)
F(mark(X)) → F(X)
G(mark(X)) → G(X)
PROPER(f(X)) → F(proper(X))
PROPER(f(X)) → PROPER(X)
PROPER(c(X)) → C(proper(X))
PROPER(c(X)) → PROPER(X)
PROPER(g(X)) → G(proper(X))
PROPER(g(X)) → PROPER(X)
F(ok(X)) → F(X)
C(ok(X)) → C(X)
G(ok(X)) → G(X)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 6 SCCs with 10 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

C(ok(X)) → C(X)

The TRS R consists of the following rules:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


C(ok(X)) → C(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
C(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active
f(x1)  =  x1
a  =  a
mark(x1)  =  mark
c(x1)  =  x1
g(x1)  =  x1
proper(x1)  =  proper
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active > mark
proper > ok1
proper > a

Status:
trivial


The following usable rules [FROCOS05] were oriented:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(ok(X)) → G(X)
G(mark(X)) → G(X)

The TRS R consists of the following rules:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(mark(X)) → G(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
G(x1)  =  x1
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active
f(x1)  =  x1
a  =  a
c(x1)  =  c
g(x1)  =  x1
proper(x1)  =  proper
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active > mark1
active > c
proper > c
proper > a

Status:
trivial


The following usable rules [FROCOS05] were oriented:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(ok(X)) → G(X)

The TRS R consists of the following rules:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(ok(X)) → G(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
G(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active
f(x1)  =  x1
a  =  a
mark(x1)  =  mark
c(x1)  =  x1
g(x1)  =  x1
proper(x1)  =  proper
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active > mark
proper > ok1
proper > a

Status:
trivial


The following usable rules [FROCOS05] were oriented:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(ok(X)) → F(X)
F(mark(X)) → F(X)

The TRS R consists of the following rules:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(mark(X)) → F(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(x1)  =  x1
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active
f(x1)  =  x1
a  =  a
c(x1)  =  c
g(x1)  =  x1
proper(x1)  =  proper
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active > mark1
active > c
proper > c
proper > a

Status:
trivial


The following usable rules [FROCOS05] were oriented:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(ok(X)) → F(X)

The TRS R consists of the following rules:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(ok(X)) → F(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active
f(x1)  =  x1
a  =  a
mark(x1)  =  mark
c(x1)  =  x1
g(x1)  =  x1
proper(x1)  =  proper
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active > mark
proper > ok1
proper > a

Status:
trivial


The following usable rules [FROCOS05] were oriented:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(21) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(23) TRUE

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(c(X)) → PROPER(X)
PROPER(f(X)) → PROPER(X)
PROPER(g(X)) → PROPER(X)

The TRS R consists of the following rules:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(c(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
c(x1)  =  c(x1)
f(x1)  =  x1
g(x1)  =  x1
active(x1)  =  active
a  =  a
mark(x1)  =  mark
proper(x1)  =  x1
ok(x1)  =  ok
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active > mark
a > ok

Status:
trivial


The following usable rules [FROCOS05] were oriented:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(f(X)) → PROPER(X)
PROPER(g(X)) → PROPER(X)

The TRS R consists of the following rules:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(g(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
f(x1)  =  x1
g(x1)  =  g(x1)
active(x1)  =  x1
a  =  a
mark(x1)  =  mark
c(x1)  =  c
proper(x1)  =  x1
ok(x1)  =  ok
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
a > mark
a > ok
c > ok

Status:
trivial


The following usable rules [FROCOS05] were oriented:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(f(X)) → PROPER(X)

The TRS R consists of the following rules:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(f(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
f(x1)  =  f(x1)
active(x1)  =  x1
a  =  a
mark(x1)  =  mark
c(x1)  =  c
g(x1)  =  g
proper(x1)  =  x1
ok(x1)  =  ok
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
f1 > mark
a > ok
g > mark
g > ok
c > ok

Status:
trivial


The following usable rules [FROCOS05] were oriented:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(30) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(32) TRUE

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(g(X)) → ACTIVE(X)
ACTIVE(f(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(f(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
g(x1)  =  x1
f(x1)  =  f(x1)
active(x1)  =  x1
a  =  a
mark(x1)  =  mark
c(x1)  =  c
proper(x1)  =  x1
ok(x1)  =  ok
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
f1 > mark
a > ok
c > ok

Status:
trivial


The following usable rules [FROCOS05] were oriented:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(35) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(g(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(g(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
g(x1)  =  g(x1)
active(x1)  =  x1
f(x1)  =  f
a  =  a
mark(x1)  =  mark
c(x1)  =  c
proper(x1)  =  x1
ok(x1)  =  ok
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
f > mark
f > ok
a > ok
c > ok

Status:
trivial


The following usable rules [FROCOS05] were oriented:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(37) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(39) TRUE

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TOP(mark(X)) → TOP(proper(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TOP(x1)  =  x1
ok(x1)  =  x1
active(x1)  =  x1
mark(x1)  =  mark(x1)
proper(x1)  =  x1
f(x1)  =  x1
a  =  a
c(x1)  =  c
g(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
a > mark1
a > c

Status:
trivial


The following usable rules [FROCOS05] were oriented:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))

The TRS R consists of the following rules:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TOP(ok(X)) → TOP(active(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TOP(x1)  =  x1
ok(x1)  =  ok
active(x1)  =  active
mark(x1)  =  mark
f(x1)  =  x1
g(x1)  =  x1
proper(x1)  =  proper
a  =  a
c(x1)  =  c
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
proper > c > ok > active > mark

Status:
trivial


The following usable rules [FROCOS05] were oriented:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(44) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(46) TRUE