(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
g(X) → h(activate(X))
c → d
h(n__d) → g(n__c)
d → n__d
c → n__c
activate(n__d) → d
activate(n__c) → c
activate(X) → X
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
G(X) → H(activate(X))
G(X) → ACTIVATE(X)
C → D
H(n__d) → G(n__c)
ACTIVATE(n__d) → D
ACTIVATE(n__c) → C
The TRS R consists of the following rules:
g(X) → h(activate(X))
c → d
h(n__d) → g(n__c)
d → n__d
c → n__c
activate(n__d) → d
activate(n__c) → c
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
H(n__d) → G(n__c)
G(X) → H(activate(X))
The TRS R consists of the following rules:
g(X) → h(activate(X))
c → d
h(n__d) → g(n__c)
d → n__d
c → n__c
activate(n__d) → d
activate(n__c) → c
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.