(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

g(X) → h(activate(X))
cd
h(n__d) → g(n__c)
dn__d
cn__c
activate(n__d) → d
activate(n__c) → c
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(X) → H(activate(X))
G(X) → ACTIVATE(X)
CD
H(n__d) → G(n__c)
ACTIVATE(n__d) → D
ACTIVATE(n__c) → C

The TRS R consists of the following rules:

g(X) → h(activate(X))
cd
h(n__d) → g(n__c)
dn__d
cn__c
activate(n__d) → d
activate(n__c) → c
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

H(n__d) → G(n__c)
G(X) → H(activate(X))

The TRS R consists of the following rules:

g(X) → h(activate(X))
cd
h(n__d) → g(n__c)
dn__d
cn__c
activate(n__d) → d
activate(n__c) → c
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.