(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

natscons(0, n__incr(nats))
pairscons(0, n__incr(odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
head(cons(X, XS)) → X
tail(cons(X, XS)) → activate(XS)
incr(X) → n__incr(X)
activate(n__incr(X)) → incr(X)
activate(X) → X

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(activate(x1)) = x1   
POL(cons(x1, x2)) = x1 + x2   
POL(head(x1)) = 1 + x1   
POL(incr(x1)) = x1   
POL(n__incr(x1)) = x1   
POL(nats) = 0   
POL(odds) = 0   
POL(pairs) = 0   
POL(s(x1)) = x1   
POL(tail(x1)) = 1 + x1   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

head(cons(X, XS)) → X
tail(cons(X, XS)) → activate(XS)


(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

natscons(0, n__incr(nats))
pairscons(0, n__incr(odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
activate(n__incr(X)) → incr(X)
activate(X) → X

Q is empty.

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NATSNATS
PAIRSODDS
ODDSINCR(pairs)
ODDSPAIRS
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(X)

The TRS R consists of the following rules:

natscons(0, n__incr(nats))
pairscons(0, n__incr(odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
activate(n__incr(X)) → incr(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 1 less node.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__incr(X)) → INCR(X)
INCR(cons(X, XS)) → ACTIVATE(XS)

The TRS R consists of the following rules:

natscons(0, n__incr(nats))
pairscons(0, n__incr(odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
activate(n__incr(X)) → incr(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__incr(X)) → INCR(X)
INCR(cons(X, XS)) → ACTIVATE(XS)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • INCR(cons(X, XS)) → ACTIVATE(XS)
    The graph contains the following edges 1 > 1

  • ACTIVATE(n__incr(X)) → INCR(X)
    The graph contains the following edges 1 > 1

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ODDSPAIRS
PAIRSODDS

The TRS R consists of the following rules:

natscons(0, n__incr(nats))
pairscons(0, n__incr(odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
activate(n__incr(X)) → incr(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ODDSPAIRS
PAIRSODDS

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = PAIRS evaluates to t =PAIRS

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Semiunifier: [ ]
  • Matcher: [ ]




Rewriting sequence

PAIRSODDS
with rule PAIRSODDS at position [] and matcher [ ]

ODDSPAIRS
with rule ODDSPAIRS

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(16) FALSE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NATSNATS

The TRS R consists of the following rules:

natscons(0, n__incr(nats))
pairscons(0, n__incr(odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
activate(n__incr(X)) → incr(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NATSNATS

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = NATS evaluates to t =NATS

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from NATS to NATS.



(21) FALSE