(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

natscons(0, n__incr(n__nats))
pairscons(0, n__incr(n__odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
head(cons(X, XS)) → X
tail(cons(X, XS)) → activate(XS)
incr(X) → n__incr(X)
natsn__nats
oddsn__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ODDSINCR(pairs)
ODDSPAIRS
INCR(cons(X, XS)) → ACTIVATE(XS)
TAIL(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(activate(X))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__nats) → NATS
ACTIVATE(n__odds) → ODDS

The TRS R consists of the following rules:

natscons(0, n__incr(n__nats))
pairscons(0, n__incr(n__odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
head(cons(X, XS)) → X
tail(cons(X, XS)) → activate(XS)
incr(X) → n__incr(X)
natsn__nats
oddsn__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(activate(X))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__odds) → ODDS
ODDSINCR(pairs)

The TRS R consists of the following rules:

natscons(0, n__incr(n__nats))
pairscons(0, n__incr(n__odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
head(cons(X, XS)) → X
tail(cons(X, XS)) → activate(XS)
incr(X) → n__incr(X)
natsn__nats
oddsn__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.