0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 QDP
↳5 QDPOrderProof (⇔)
↳6 QDP
↳7 DependencyGraphProof (⇔)
↳8 QDP
a__f(a, b, X) → a__f(X, X, mark(X))
a__c → a
a__c → b
mark(f(X1, X2, X3)) → a__f(X1, X2, mark(X3))
mark(c) → a__c
mark(a) → a
mark(b) → b
a__f(X1, X2, X3) → f(X1, X2, X3)
a__c → c
A__F(a, b, X) → A__F(X, X, mark(X))
A__F(a, b, X) → MARK(X)
MARK(f(X1, X2, X3)) → A__F(X1, X2, mark(X3))
MARK(f(X1, X2, X3)) → MARK(X3)
MARK(c) → A__C
a__f(a, b, X) → a__f(X, X, mark(X))
a__c → a
a__c → b
mark(f(X1, X2, X3)) → a__f(X1, X2, mark(X3))
mark(c) → a__c
mark(a) → a
mark(b) → b
a__f(X1, X2, X3) → f(X1, X2, X3)
a__c → c
A__F(a, b, X) → MARK(X)
MARK(f(X1, X2, X3)) → A__F(X1, X2, mark(X3))
A__F(a, b, X) → A__F(X, X, mark(X))
MARK(f(X1, X2, X3)) → MARK(X3)
a__f(a, b, X) → a__f(X, X, mark(X))
a__c → a
a__c → b
mark(f(X1, X2, X3)) → a__f(X1, X2, mark(X3))
mark(c) → a__c
mark(a) → a
mark(b) → b
a__f(X1, X2, X3) → f(X1, X2, X3)
a__c → c
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(f(X1, X2, X3)) → A__F(X1, X2, mark(X3))
MARK(f(X1, X2, X3)) → MARK(X3)
[a, b, c, ac]
[f1, af1]
a: []
b: []
f1: [1]
af1: [1]
c: []
ac: []
mark(f(X1, X2, X3)) → a__f(X1, X2, mark(X3))
mark(c) → a__c
mark(a) → a
mark(b) → b
a__f(X1, X2, X3) → f(X1, X2, X3)
a__f(a, b, X) → a__f(X, X, mark(X))
a__c → a
a__c → b
a__c → c
A__F(a, b, X) → MARK(X)
A__F(a, b, X) → A__F(X, X, mark(X))
a__f(a, b, X) → a__f(X, X, mark(X))
a__c → a
a__c → b
mark(f(X1, X2, X3)) → a__f(X1, X2, mark(X3))
mark(c) → a__c
mark(a) → a
mark(b) → b
a__f(X1, X2, X3) → f(X1, X2, X3)
a__c → c
A__F(a, b, X) → A__F(X, X, mark(X))
a__f(a, b, X) → a__f(X, X, mark(X))
a__c → a
a__c → b
mark(f(X1, X2, X3)) → a__f(X1, X2, mark(X3))
mark(c) → a__c
mark(a) → a
mark(b) → b
a__f(X1, X2, X3) → f(X1, X2, X3)
a__c → c