(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

p(0) → 0
p(s(X)) → X
leq(0, Y) → true
leq(s(X), 0) → false
leq(s(X), s(Y)) → leq(X, Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
diff(X, Y) → if(leq(X, Y), n__0, n__s(diff(p(X), Y)))
0n__0
s(X) → n__s(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LEQ(s(X), s(Y)) → LEQ(X, Y)
IF(true, X, Y) → ACTIVATE(X)
IF(false, X, Y) → ACTIVATE(Y)
DIFF(X, Y) → IF(leq(X, Y), n__0, n__s(diff(p(X), Y)))
DIFF(X, Y) → LEQ(X, Y)
DIFF(X, Y) → DIFF(p(X), Y)
DIFF(X, Y) → P(X)
ACTIVATE(n__0) → 01
ACTIVATE(n__s(X)) → S(X)

The TRS R consists of the following rules:

p(0) → 0
p(s(X)) → X
leq(0, Y) → true
leq(s(X), 0) → false
leq(s(X), s(Y)) → leq(X, Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
diff(X, Y) → if(leq(X, Y), n__0, n__s(diff(p(X), Y)))
0n__0
s(X) → n__s(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 7 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LEQ(s(X), s(Y)) → LEQ(X, Y)

The TRS R consists of the following rules:

p(0) → 0
p(s(X)) → X
leq(0, Y) → true
leq(s(X), 0) → false
leq(s(X), s(Y)) → leq(X, Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
diff(X, Y) → if(leq(X, Y), n__0, n__s(diff(p(X), Y)))
0n__0
s(X) → n__s(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LEQ(s(X), s(Y)) → LEQ(X, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LEQ(x1, x2)  =  x2
s(x1)  =  s(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

p(0) → 0
p(s(X)) → X
leq(0, Y) → true
leq(s(X), 0) → false
leq(s(X), s(Y)) → leq(X, Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
diff(X, Y) → if(leq(X, Y), n__0, n__s(diff(p(X), Y)))
0n__0
s(X) → n__s(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIFF(X, Y) → DIFF(p(X), Y)

The TRS R consists of the following rules:

p(0) → 0
p(s(X)) → X
leq(0, Y) → true
leq(s(X), 0) → false
leq(s(X), s(Y)) → leq(X, Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
diff(X, Y) → if(leq(X, Y), n__0, n__s(diff(p(X), Y)))
0n__0
s(X) → n__s(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.