(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(p(0)) → mark(0)
active(p(s(X))) → mark(X)
active(leq(0, Y)) → mark(true)
active(leq(s(X), 0)) → mark(false)
active(leq(s(X), s(Y))) → mark(leq(X, Y))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(diff(X, Y)) → mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) → p(active(X))
active(s(X)) → s(active(X))
active(leq(X1, X2)) → leq(active(X1), X2)
active(leq(X1, X2)) → leq(X1, active(X2))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(diff(X1, X2)) → diff(active(X1), X2)
active(diff(X1, X2)) → diff(X1, active(X2))
p(mark(X)) → mark(p(X))
s(mark(X)) → mark(s(X))
leq(mark(X1), X2) → mark(leq(X1, X2))
leq(X1, mark(X2)) → mark(leq(X1, X2))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
diff(mark(X1), X2) → mark(diff(X1, X2))
diff(X1, mark(X2)) → mark(diff(X1, X2))
proper(p(X)) → p(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(leq(X1, X2)) → leq(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) → diff(proper(X1), proper(X2))
p(ok(X)) → ok(p(X))
s(ok(X)) → ok(s(X))
leq(ok(X1), ok(X2)) → ok(leq(X1, X2))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
diff(ok(X1), ok(X2)) → ok(diff(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(leq(s(X), s(Y))) → LEQ(X, Y)
ACTIVE(diff(X, Y)) → IF(leq(X, Y), 0, s(diff(p(X), Y)))
ACTIVE(diff(X, Y)) → LEQ(X, Y)
ACTIVE(diff(X, Y)) → S(diff(p(X), Y))
ACTIVE(diff(X, Y)) → DIFF(p(X), Y)
ACTIVE(diff(X, Y)) → P(X)
ACTIVE(p(X)) → P(active(X))
ACTIVE(p(X)) → ACTIVE(X)
ACTIVE(s(X)) → S(active(X))
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(leq(X1, X2)) → LEQ(active(X1), X2)
ACTIVE(leq(X1, X2)) → ACTIVE(X1)
ACTIVE(leq(X1, X2)) → LEQ(X1, active(X2))
ACTIVE(leq(X1, X2)) → ACTIVE(X2)
ACTIVE(if(X1, X2, X3)) → IF(active(X1), X2, X3)
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(diff(X1, X2)) → DIFF(active(X1), X2)
ACTIVE(diff(X1, X2)) → ACTIVE(X1)
ACTIVE(diff(X1, X2)) → DIFF(X1, active(X2))
ACTIVE(diff(X1, X2)) → ACTIVE(X2)
P(mark(X)) → P(X)
S(mark(X)) → S(X)
LEQ(mark(X1), X2) → LEQ(X1, X2)
LEQ(X1, mark(X2)) → LEQ(X1, X2)
IF(mark(X1), X2, X3) → IF(X1, X2, X3)
DIFF(mark(X1), X2) → DIFF(X1, X2)
DIFF(X1, mark(X2)) → DIFF(X1, X2)
PROPER(p(X)) → P(proper(X))
PROPER(p(X)) → PROPER(X)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(leq(X1, X2)) → LEQ(proper(X1), proper(X2))
PROPER(leq(X1, X2)) → PROPER(X1)
PROPER(leq(X1, X2)) → PROPER(X2)
PROPER(if(X1, X2, X3)) → IF(proper(X1), proper(X2), proper(X3))
PROPER(if(X1, X2, X3)) → PROPER(X1)
PROPER(if(X1, X2, X3)) → PROPER(X2)
PROPER(if(X1, X2, X3)) → PROPER(X3)
PROPER(diff(X1, X2)) → DIFF(proper(X1), proper(X2))
PROPER(diff(X1, X2)) → PROPER(X1)
PROPER(diff(X1, X2)) → PROPER(X2)
P(ok(X)) → P(X)
S(ok(X)) → S(X)
LEQ(ok(X1), ok(X2)) → LEQ(X1, X2)
IF(ok(X1), ok(X2), ok(X3)) → IF(X1, X2, X3)
DIFF(ok(X1), ok(X2)) → DIFF(X1, X2)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(p(0)) → mark(0)
active(p(s(X))) → mark(X)
active(leq(0, Y)) → mark(true)
active(leq(s(X), 0)) → mark(false)
active(leq(s(X), s(Y))) → mark(leq(X, Y))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(diff(X, Y)) → mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) → p(active(X))
active(s(X)) → s(active(X))
active(leq(X1, X2)) → leq(active(X1), X2)
active(leq(X1, X2)) → leq(X1, active(X2))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(diff(X1, X2)) → diff(active(X1), X2)
active(diff(X1, X2)) → diff(X1, active(X2))
p(mark(X)) → mark(p(X))
s(mark(X)) → mark(s(X))
leq(mark(X1), X2) → mark(leq(X1, X2))
leq(X1, mark(X2)) → mark(leq(X1, X2))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
diff(mark(X1), X2) → mark(diff(X1, X2))
diff(X1, mark(X2)) → mark(diff(X1, X2))
proper(p(X)) → p(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(leq(X1, X2)) → leq(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) → diff(proper(X1), proper(X2))
p(ok(X)) → ok(p(X))
s(ok(X)) → ok(s(X))
leq(ok(X1), ok(X2)) → ok(leq(X1, X2))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
diff(ok(X1), ok(X2)) → ok(diff(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 8 SCCs with 20 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIFF(X1, mark(X2)) → DIFF(X1, X2)
DIFF(mark(X1), X2) → DIFF(X1, X2)
DIFF(ok(X1), ok(X2)) → DIFF(X1, X2)

The TRS R consists of the following rules:

active(p(0)) → mark(0)
active(p(s(X))) → mark(X)
active(leq(0, Y)) → mark(true)
active(leq(s(X), 0)) → mark(false)
active(leq(s(X), s(Y))) → mark(leq(X, Y))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(diff(X, Y)) → mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) → p(active(X))
active(s(X)) → s(active(X))
active(leq(X1, X2)) → leq(active(X1), X2)
active(leq(X1, X2)) → leq(X1, active(X2))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(diff(X1, X2)) → diff(active(X1), X2)
active(diff(X1, X2)) → diff(X1, active(X2))
p(mark(X)) → mark(p(X))
s(mark(X)) → mark(s(X))
leq(mark(X1), X2) → mark(leq(X1, X2))
leq(X1, mark(X2)) → mark(leq(X1, X2))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
diff(mark(X1), X2) → mark(diff(X1, X2))
diff(X1, mark(X2)) → mark(diff(X1, X2))
proper(p(X)) → p(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(leq(X1, X2)) → leq(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) → diff(proper(X1), proper(X2))
p(ok(X)) → ok(p(X))
s(ok(X)) → ok(s(X))
leq(ok(X1), ok(X2)) → ok(leq(X1, X2))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
diff(ok(X1), ok(X2)) → ok(diff(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


DIFF(X1, mark(X2)) → DIFF(X1, X2)
DIFF(ok(X1), ok(X2)) → DIFF(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
DIFF(x1, x2)  =  x2
mark(x1)  =  mark(x1)
ok(x1)  =  ok(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset
ok1: multiset

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIFF(mark(X1), X2) → DIFF(X1, X2)

The TRS R consists of the following rules:

active(p(0)) → mark(0)
active(p(s(X))) → mark(X)
active(leq(0, Y)) → mark(true)
active(leq(s(X), 0)) → mark(false)
active(leq(s(X), s(Y))) → mark(leq(X, Y))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(diff(X, Y)) → mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) → p(active(X))
active(s(X)) → s(active(X))
active(leq(X1, X2)) → leq(active(X1), X2)
active(leq(X1, X2)) → leq(X1, active(X2))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(diff(X1, X2)) → diff(active(X1), X2)
active(diff(X1, X2)) → diff(X1, active(X2))
p(mark(X)) → mark(p(X))
s(mark(X)) → mark(s(X))
leq(mark(X1), X2) → mark(leq(X1, X2))
leq(X1, mark(X2)) → mark(leq(X1, X2))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
diff(mark(X1), X2) → mark(diff(X1, X2))
diff(X1, mark(X2)) → mark(diff(X1, X2))
proper(p(X)) → p(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(leq(X1, X2)) → leq(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) → diff(proper(X1), proper(X2))
p(ok(X)) → ok(p(X))
s(ok(X)) → ok(s(X))
leq(ok(X1), ok(X2)) → ok(leq(X1, X2))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
diff(ok(X1), ok(X2)) → ok(diff(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


DIFF(mark(X1), X2) → DIFF(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
mark1 > DIFF2

Status:
DIFF2: [1,2]
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(p(0)) → mark(0)
active(p(s(X))) → mark(X)
active(leq(0, Y)) → mark(true)
active(leq(s(X), 0)) → mark(false)
active(leq(s(X), s(Y))) → mark(leq(X, Y))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(diff(X, Y)) → mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) → p(active(X))
active(s(X)) → s(active(X))
active(leq(X1, X2)) → leq(active(X1), X2)
active(leq(X1, X2)) → leq(X1, active(X2))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(diff(X1, X2)) → diff(active(X1), X2)
active(diff(X1, X2)) → diff(X1, active(X2))
p(mark(X)) → mark(p(X))
s(mark(X)) → mark(s(X))
leq(mark(X1), X2) → mark(leq(X1, X2))
leq(X1, mark(X2)) → mark(leq(X1, X2))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
diff(mark(X1), X2) → mark(diff(X1, X2))
diff(X1, mark(X2)) → mark(diff(X1, X2))
proper(p(X)) → p(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(leq(X1, X2)) → leq(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) → diff(proper(X1), proper(X2))
p(ok(X)) → ok(p(X))
s(ok(X)) → ok(s(X))
leq(ok(X1), ok(X2)) → ok(leq(X1, X2))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
diff(ok(X1), ok(X2)) → ok(diff(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF(ok(X1), ok(X2), ok(X3)) → IF(X1, X2, X3)
IF(mark(X1), X2, X3) → IF(X1, X2, X3)

The TRS R consists of the following rules:

active(p(0)) → mark(0)
active(p(s(X))) → mark(X)
active(leq(0, Y)) → mark(true)
active(leq(s(X), 0)) → mark(false)
active(leq(s(X), s(Y))) → mark(leq(X, Y))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(diff(X, Y)) → mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) → p(active(X))
active(s(X)) → s(active(X))
active(leq(X1, X2)) → leq(active(X1), X2)
active(leq(X1, X2)) → leq(X1, active(X2))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(diff(X1, X2)) → diff(active(X1), X2)
active(diff(X1, X2)) → diff(X1, active(X2))
p(mark(X)) → mark(p(X))
s(mark(X)) → mark(s(X))
leq(mark(X1), X2) → mark(leq(X1, X2))
leq(X1, mark(X2)) → mark(leq(X1, X2))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
diff(mark(X1), X2) → mark(diff(X1, X2))
diff(X1, mark(X2)) → mark(diff(X1, X2))
proper(p(X)) → p(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(leq(X1, X2)) → leq(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) → diff(proper(X1), proper(X2))
p(ok(X)) → ok(p(X))
s(ok(X)) → ok(s(X))
leq(ok(X1), ok(X2)) → ok(leq(X1, X2))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
diff(ok(X1), ok(X2)) → ok(diff(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


IF(ok(X1), ok(X2), ok(X3)) → IF(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
IF(x1, x2, x3)  =  IF(x3)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Precedence:
ok1 > IF1
mark1 > IF1

Status:
IF1: multiset
ok1: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF(mark(X1), X2, X3) → IF(X1, X2, X3)

The TRS R consists of the following rules:

active(p(0)) → mark(0)
active(p(s(X))) → mark(X)
active(leq(0, Y)) → mark(true)
active(leq(s(X), 0)) → mark(false)
active(leq(s(X), s(Y))) → mark(leq(X, Y))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(diff(X, Y)) → mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) → p(active(X))
active(s(X)) → s(active(X))
active(leq(X1, X2)) → leq(active(X1), X2)
active(leq(X1, X2)) → leq(X1, active(X2))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(diff(X1, X2)) → diff(active(X1), X2)
active(diff(X1, X2)) → diff(X1, active(X2))
p(mark(X)) → mark(p(X))
s(mark(X)) → mark(s(X))
leq(mark(X1), X2) → mark(leq(X1, X2))
leq(X1, mark(X2)) → mark(leq(X1, X2))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
diff(mark(X1), X2) → mark(diff(X1, X2))
diff(X1, mark(X2)) → mark(diff(X1, X2))
proper(p(X)) → p(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(leq(X1, X2)) → leq(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) → diff(proper(X1), proper(X2))
p(ok(X)) → ok(p(X))
s(ok(X)) → ok(s(X))
leq(ok(X1), ok(X2)) → ok(leq(X1, X2))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
diff(ok(X1), ok(X2)) → ok(diff(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


IF(mark(X1), X2, X3) → IF(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
trivial

Status:
IF3: [3,1,2]
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(p(0)) → mark(0)
active(p(s(X))) → mark(X)
active(leq(0, Y)) → mark(true)
active(leq(s(X), 0)) → mark(false)
active(leq(s(X), s(Y))) → mark(leq(X, Y))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(diff(X, Y)) → mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) → p(active(X))
active(s(X)) → s(active(X))
active(leq(X1, X2)) → leq(active(X1), X2)
active(leq(X1, X2)) → leq(X1, active(X2))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(diff(X1, X2)) → diff(active(X1), X2)
active(diff(X1, X2)) → diff(X1, active(X2))
p(mark(X)) → mark(p(X))
s(mark(X)) → mark(s(X))
leq(mark(X1), X2) → mark(leq(X1, X2))
leq(X1, mark(X2)) → mark(leq(X1, X2))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
diff(mark(X1), X2) → mark(diff(X1, X2))
diff(X1, mark(X2)) → mark(diff(X1, X2))
proper(p(X)) → p(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(leq(X1, X2)) → leq(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) → diff(proper(X1), proper(X2))
p(ok(X)) → ok(p(X))
s(ok(X)) → ok(s(X))
leq(ok(X1), ok(X2)) → ok(leq(X1, X2))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
diff(ok(X1), ok(X2)) → ok(diff(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LEQ(X1, mark(X2)) → LEQ(X1, X2)
LEQ(mark(X1), X2) → LEQ(X1, X2)
LEQ(ok(X1), ok(X2)) → LEQ(X1, X2)

The TRS R consists of the following rules:

active(p(0)) → mark(0)
active(p(s(X))) → mark(X)
active(leq(0, Y)) → mark(true)
active(leq(s(X), 0)) → mark(false)
active(leq(s(X), s(Y))) → mark(leq(X, Y))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(diff(X, Y)) → mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) → p(active(X))
active(s(X)) → s(active(X))
active(leq(X1, X2)) → leq(active(X1), X2)
active(leq(X1, X2)) → leq(X1, active(X2))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(diff(X1, X2)) → diff(active(X1), X2)
active(diff(X1, X2)) → diff(X1, active(X2))
p(mark(X)) → mark(p(X))
s(mark(X)) → mark(s(X))
leq(mark(X1), X2) → mark(leq(X1, X2))
leq(X1, mark(X2)) → mark(leq(X1, X2))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
diff(mark(X1), X2) → mark(diff(X1, X2))
diff(X1, mark(X2)) → mark(diff(X1, X2))
proper(p(X)) → p(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(leq(X1, X2)) → leq(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) → diff(proper(X1), proper(X2))
p(ok(X)) → ok(p(X))
s(ok(X)) → ok(s(X))
leq(ok(X1), ok(X2)) → ok(leq(X1, X2))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
diff(ok(X1), ok(X2)) → ok(diff(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LEQ(X1, mark(X2)) → LEQ(X1, X2)
LEQ(ok(X1), ok(X2)) → LEQ(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LEQ(x1, x2)  =  x2
mark(x1)  =  mark(x1)
ok(x1)  =  ok(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset
ok1: multiset

The following usable rules [FROCOS05] were oriented: none

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LEQ(mark(X1), X2) → LEQ(X1, X2)

The TRS R consists of the following rules:

active(p(0)) → mark(0)
active(p(s(X))) → mark(X)
active(leq(0, Y)) → mark(true)
active(leq(s(X), 0)) → mark(false)
active(leq(s(X), s(Y))) → mark(leq(X, Y))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(diff(X, Y)) → mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) → p(active(X))
active(s(X)) → s(active(X))
active(leq(X1, X2)) → leq(active(X1), X2)
active(leq(X1, X2)) → leq(X1, active(X2))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(diff(X1, X2)) → diff(active(X1), X2)
active(diff(X1, X2)) → diff(X1, active(X2))
p(mark(X)) → mark(p(X))
s(mark(X)) → mark(s(X))
leq(mark(X1), X2) → mark(leq(X1, X2))
leq(X1, mark(X2)) → mark(leq(X1, X2))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
diff(mark(X1), X2) → mark(diff(X1, X2))
diff(X1, mark(X2)) → mark(diff(X1, X2))
proper(p(X)) → p(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(leq(X1, X2)) → leq(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) → diff(proper(X1), proper(X2))
p(ok(X)) → ok(p(X))
s(ok(X)) → ok(s(X))
leq(ok(X1), ok(X2)) → ok(leq(X1, X2))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
diff(ok(X1), ok(X2)) → ok(diff(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LEQ(mark(X1), X2) → LEQ(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
mark1 > LEQ2

Status:
LEQ2: [1,2]
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(23) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(p(0)) → mark(0)
active(p(s(X))) → mark(X)
active(leq(0, Y)) → mark(true)
active(leq(s(X), 0)) → mark(false)
active(leq(s(X), s(Y))) → mark(leq(X, Y))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(diff(X, Y)) → mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) → p(active(X))
active(s(X)) → s(active(X))
active(leq(X1, X2)) → leq(active(X1), X2)
active(leq(X1, X2)) → leq(X1, active(X2))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(diff(X1, X2)) → diff(active(X1), X2)
active(diff(X1, X2)) → diff(X1, active(X2))
p(mark(X)) → mark(p(X))
s(mark(X)) → mark(s(X))
leq(mark(X1), X2) → mark(leq(X1, X2))
leq(X1, mark(X2)) → mark(leq(X1, X2))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
diff(mark(X1), X2) → mark(diff(X1, X2))
diff(X1, mark(X2)) → mark(diff(X1, X2))
proper(p(X)) → p(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(leq(X1, X2)) → leq(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) → diff(proper(X1), proper(X2))
p(ok(X)) → ok(p(X))
s(ok(X)) → ok(s(X))
leq(ok(X1), ok(X2)) → ok(leq(X1, X2))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
diff(ok(X1), ok(X2)) → ok(diff(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(25) TRUE

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(p(0)) → mark(0)
active(p(s(X))) → mark(X)
active(leq(0, Y)) → mark(true)
active(leq(s(X), 0)) → mark(false)
active(leq(s(X), s(Y))) → mark(leq(X, Y))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(diff(X, Y)) → mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) → p(active(X))
active(s(X)) → s(active(X))
active(leq(X1, X2)) → leq(active(X1), X2)
active(leq(X1, X2)) → leq(X1, active(X2))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(diff(X1, X2)) → diff(active(X1), X2)
active(diff(X1, X2)) → diff(X1, active(X2))
p(mark(X)) → mark(p(X))
s(mark(X)) → mark(s(X))
leq(mark(X1), X2) → mark(leq(X1, X2))
leq(X1, mark(X2)) → mark(leq(X1, X2))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
diff(mark(X1), X2) → mark(diff(X1, X2))
diff(X1, mark(X2)) → mark(diff(X1, X2))
proper(p(X)) → p(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(leq(X1, X2)) → leq(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) → diff(proper(X1), proper(X2))
p(ok(X)) → ok(p(X))
s(ok(X)) → ok(s(X))
leq(ok(X1), ok(X2)) → ok(leq(X1, X2))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
diff(ok(X1), ok(X2)) → ok(diff(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
trivial

Status:
ok1: multiset

The following usable rules [FROCOS05] were oriented: none

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(p(0)) → mark(0)
active(p(s(X))) → mark(X)
active(leq(0, Y)) → mark(true)
active(leq(s(X), 0)) → mark(false)
active(leq(s(X), s(Y))) → mark(leq(X, Y))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(diff(X, Y)) → mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) → p(active(X))
active(s(X)) → s(active(X))
active(leq(X1, X2)) → leq(active(X1), X2)
active(leq(X1, X2)) → leq(X1, active(X2))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(diff(X1, X2)) → diff(active(X1), X2)
active(diff(X1, X2)) → diff(X1, active(X2))
p(mark(X)) → mark(p(X))
s(mark(X)) → mark(s(X))
leq(mark(X1), X2) → mark(leq(X1, X2))
leq(X1, mark(X2)) → mark(leq(X1, X2))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
diff(mark(X1), X2) → mark(diff(X1, X2))
diff(X1, mark(X2)) → mark(diff(X1, X2))
proper(p(X)) → p(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(leq(X1, X2)) → leq(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) → diff(proper(X1), proper(X2))
p(ok(X)) → ok(p(X))
s(ok(X)) → ok(s(X))
leq(ok(X1), ok(X2)) → ok(leq(X1, X2))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
diff(ok(X1), ok(X2)) → ok(diff(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
mark1 > S1

Status:
S1: [1]
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(30) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(p(0)) → mark(0)
active(p(s(X))) → mark(X)
active(leq(0, Y)) → mark(true)
active(leq(s(X), 0)) → mark(false)
active(leq(s(X), s(Y))) → mark(leq(X, Y))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(diff(X, Y)) → mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) → p(active(X))
active(s(X)) → s(active(X))
active(leq(X1, X2)) → leq(active(X1), X2)
active(leq(X1, X2)) → leq(X1, active(X2))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(diff(X1, X2)) → diff(active(X1), X2)
active(diff(X1, X2)) → diff(X1, active(X2))
p(mark(X)) → mark(p(X))
s(mark(X)) → mark(s(X))
leq(mark(X1), X2) → mark(leq(X1, X2))
leq(X1, mark(X2)) → mark(leq(X1, X2))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
diff(mark(X1), X2) → mark(diff(X1, X2))
diff(X1, mark(X2)) → mark(diff(X1, X2))
proper(p(X)) → p(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(leq(X1, X2)) → leq(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) → diff(proper(X1), proper(X2))
p(ok(X)) → ok(p(X))
s(ok(X)) → ok(s(X))
leq(ok(X1), ok(X2)) → ok(leq(X1, X2))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
diff(ok(X1), ok(X2)) → ok(diff(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(32) TRUE

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P(ok(X)) → P(X)
P(mark(X)) → P(X)

The TRS R consists of the following rules:

active(p(0)) → mark(0)
active(p(s(X))) → mark(X)
active(leq(0, Y)) → mark(true)
active(leq(s(X), 0)) → mark(false)
active(leq(s(X), s(Y))) → mark(leq(X, Y))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(diff(X, Y)) → mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) → p(active(X))
active(s(X)) → s(active(X))
active(leq(X1, X2)) → leq(active(X1), X2)
active(leq(X1, X2)) → leq(X1, active(X2))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(diff(X1, X2)) → diff(active(X1), X2)
active(diff(X1, X2)) → diff(X1, active(X2))
p(mark(X)) → mark(p(X))
s(mark(X)) → mark(s(X))
leq(mark(X1), X2) → mark(leq(X1, X2))
leq(X1, mark(X2)) → mark(leq(X1, X2))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
diff(mark(X1), X2) → mark(diff(X1, X2))
diff(X1, mark(X2)) → mark(diff(X1, X2))
proper(p(X)) → p(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(leq(X1, X2)) → leq(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) → diff(proper(X1), proper(X2))
p(ok(X)) → ok(p(X))
s(ok(X)) → ok(s(X))
leq(ok(X1), ok(X2)) → ok(leq(X1, X2))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
diff(ok(X1), ok(X2)) → ok(diff(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


P(ok(X)) → P(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
P(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
trivial

Status:
ok1: multiset

The following usable rules [FROCOS05] were oriented: none

(35) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P(mark(X)) → P(X)

The TRS R consists of the following rules:

active(p(0)) → mark(0)
active(p(s(X))) → mark(X)
active(leq(0, Y)) → mark(true)
active(leq(s(X), 0)) → mark(false)
active(leq(s(X), s(Y))) → mark(leq(X, Y))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(diff(X, Y)) → mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) → p(active(X))
active(s(X)) → s(active(X))
active(leq(X1, X2)) → leq(active(X1), X2)
active(leq(X1, X2)) → leq(X1, active(X2))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(diff(X1, X2)) → diff(active(X1), X2)
active(diff(X1, X2)) → diff(X1, active(X2))
p(mark(X)) → mark(p(X))
s(mark(X)) → mark(s(X))
leq(mark(X1), X2) → mark(leq(X1, X2))
leq(X1, mark(X2)) → mark(leq(X1, X2))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
diff(mark(X1), X2) → mark(diff(X1, X2))
diff(X1, mark(X2)) → mark(diff(X1, X2))
proper(p(X)) → p(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(leq(X1, X2)) → leq(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) → diff(proper(X1), proper(X2))
p(ok(X)) → ok(p(X))
s(ok(X)) → ok(s(X))
leq(ok(X1), ok(X2)) → ok(leq(X1, X2))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
diff(ok(X1), ok(X2)) → ok(diff(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


P(mark(X)) → P(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
mark1 > P1

Status:
P1: [1]
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(37) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(p(0)) → mark(0)
active(p(s(X))) → mark(X)
active(leq(0, Y)) → mark(true)
active(leq(s(X), 0)) → mark(false)
active(leq(s(X), s(Y))) → mark(leq(X, Y))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(diff(X, Y)) → mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) → p(active(X))
active(s(X)) → s(active(X))
active(leq(X1, X2)) → leq(active(X1), X2)
active(leq(X1, X2)) → leq(X1, active(X2))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(diff(X1, X2)) → diff(active(X1), X2)
active(diff(X1, X2)) → diff(X1, active(X2))
p(mark(X)) → mark(p(X))
s(mark(X)) → mark(s(X))
leq(mark(X1), X2) → mark(leq(X1, X2))
leq(X1, mark(X2)) → mark(leq(X1, X2))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
diff(mark(X1), X2) → mark(diff(X1, X2))
diff(X1, mark(X2)) → mark(diff(X1, X2))
proper(p(X)) → p(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(leq(X1, X2)) → leq(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) → diff(proper(X1), proper(X2))
p(ok(X)) → ok(p(X))
s(ok(X)) → ok(s(X))
leq(ok(X1), ok(X2)) → ok(leq(X1, X2))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
diff(ok(X1), ok(X2)) → ok(diff(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(39) TRUE

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(s(X)) → PROPER(X)
PROPER(p(X)) → PROPER(X)
PROPER(leq(X1, X2)) → PROPER(X1)
PROPER(leq(X1, X2)) → PROPER(X2)
PROPER(if(X1, X2, X3)) → PROPER(X1)
PROPER(if(X1, X2, X3)) → PROPER(X2)
PROPER(if(X1, X2, X3)) → PROPER(X3)
PROPER(diff(X1, X2)) → PROPER(X1)
PROPER(diff(X1, X2)) → PROPER(X2)

The TRS R consists of the following rules:

active(p(0)) → mark(0)
active(p(s(X))) → mark(X)
active(leq(0, Y)) → mark(true)
active(leq(s(X), 0)) → mark(false)
active(leq(s(X), s(Y))) → mark(leq(X, Y))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(diff(X, Y)) → mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) → p(active(X))
active(s(X)) → s(active(X))
active(leq(X1, X2)) → leq(active(X1), X2)
active(leq(X1, X2)) → leq(X1, active(X2))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(diff(X1, X2)) → diff(active(X1), X2)
active(diff(X1, X2)) → diff(X1, active(X2))
p(mark(X)) → mark(p(X))
s(mark(X)) → mark(s(X))
leq(mark(X1), X2) → mark(leq(X1, X2))
leq(X1, mark(X2)) → mark(leq(X1, X2))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
diff(mark(X1), X2) → mark(diff(X1, X2))
diff(X1, mark(X2)) → mark(diff(X1, X2))
proper(p(X)) → p(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(leq(X1, X2)) → leq(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) → diff(proper(X1), proper(X2))
p(ok(X)) → ok(p(X))
s(ok(X)) → ok(s(X))
leq(ok(X1), ok(X2)) → ok(leq(X1, X2))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
diff(ok(X1), ok(X2)) → ok(diff(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(leq(X1, X2)) → PROPER(X1)
PROPER(leq(X1, X2)) → PROPER(X2)
PROPER(if(X1, X2, X3)) → PROPER(X1)
PROPER(if(X1, X2, X3)) → PROPER(X2)
PROPER(if(X1, X2, X3)) → PROPER(X3)
PROPER(diff(X1, X2)) → PROPER(X1)
PROPER(diff(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
s(x1)  =  x1
p(x1)  =  x1
leq(x1, x2)  =  leq(x1, x2)
if(x1, x2, x3)  =  if(x1, x2, x3)
diff(x1, x2)  =  diff(x1, x2)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
leq2: multiset
if3: multiset
diff2: multiset

The following usable rules [FROCOS05] were oriented: none

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(s(X)) → PROPER(X)
PROPER(p(X)) → PROPER(X)

The TRS R consists of the following rules:

active(p(0)) → mark(0)
active(p(s(X))) → mark(X)
active(leq(0, Y)) → mark(true)
active(leq(s(X), 0)) → mark(false)
active(leq(s(X), s(Y))) → mark(leq(X, Y))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(diff(X, Y)) → mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) → p(active(X))
active(s(X)) → s(active(X))
active(leq(X1, X2)) → leq(active(X1), X2)
active(leq(X1, X2)) → leq(X1, active(X2))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(diff(X1, X2)) → diff(active(X1), X2)
active(diff(X1, X2)) → diff(X1, active(X2))
p(mark(X)) → mark(p(X))
s(mark(X)) → mark(s(X))
leq(mark(X1), X2) → mark(leq(X1, X2))
leq(X1, mark(X2)) → mark(leq(X1, X2))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
diff(mark(X1), X2) → mark(diff(X1, X2))
diff(X1, mark(X2)) → mark(diff(X1, X2))
proper(p(X)) → p(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(leq(X1, X2)) → leq(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) → diff(proper(X1), proper(X2))
p(ok(X)) → ok(p(X))
s(ok(X)) → ok(s(X))
leq(ok(X1), ok(X2)) → ok(leq(X1, X2))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
diff(ok(X1), ok(X2)) → ok(diff(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(s(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
s(x1)  =  s(x1)
p(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
trivial

Status:
s1: multiset

The following usable rules [FROCOS05] were oriented: none

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(p(X)) → PROPER(X)

The TRS R consists of the following rules:

active(p(0)) → mark(0)
active(p(s(X))) → mark(X)
active(leq(0, Y)) → mark(true)
active(leq(s(X), 0)) → mark(false)
active(leq(s(X), s(Y))) → mark(leq(X, Y))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(diff(X, Y)) → mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) → p(active(X))
active(s(X)) → s(active(X))
active(leq(X1, X2)) → leq(active(X1), X2)
active(leq(X1, X2)) → leq(X1, active(X2))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(diff(X1, X2)) → diff(active(X1), X2)
active(diff(X1, X2)) → diff(X1, active(X2))
p(mark(X)) → mark(p(X))
s(mark(X)) → mark(s(X))
leq(mark(X1), X2) → mark(leq(X1, X2))
leq(X1, mark(X2)) → mark(leq(X1, X2))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
diff(mark(X1), X2) → mark(diff(X1, X2))
diff(X1, mark(X2)) → mark(diff(X1, X2))
proper(p(X)) → p(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(leq(X1, X2)) → leq(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) → diff(proper(X1), proper(X2))
p(ok(X)) → ok(p(X))
s(ok(X)) → ok(s(X))
leq(ok(X1), ok(X2)) → ok(leq(X1, X2))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
diff(ok(X1), ok(X2)) → ok(diff(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(p(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
p1 > PROPER1

Status:
PROPER1: [1]
p1: multiset

The following usable rules [FROCOS05] were oriented: none

(46) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(p(0)) → mark(0)
active(p(s(X))) → mark(X)
active(leq(0, Y)) → mark(true)
active(leq(s(X), 0)) → mark(false)
active(leq(s(X), s(Y))) → mark(leq(X, Y))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(diff(X, Y)) → mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) → p(active(X))
active(s(X)) → s(active(X))
active(leq(X1, X2)) → leq(active(X1), X2)
active(leq(X1, X2)) → leq(X1, active(X2))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(diff(X1, X2)) → diff(active(X1), X2)
active(diff(X1, X2)) → diff(X1, active(X2))
p(mark(X)) → mark(p(X))
s(mark(X)) → mark(s(X))
leq(mark(X1), X2) → mark(leq(X1, X2))
leq(X1, mark(X2)) → mark(leq(X1, X2))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
diff(mark(X1), X2) → mark(diff(X1, X2))
diff(X1, mark(X2)) → mark(diff(X1, X2))
proper(p(X)) → p(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(leq(X1, X2)) → leq(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) → diff(proper(X1), proper(X2))
p(ok(X)) → ok(p(X))
s(ok(X)) → ok(s(X))
leq(ok(X1), ok(X2)) → ok(leq(X1, X2))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
diff(ok(X1), ok(X2)) → ok(diff(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(48) TRUE

(49) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(p(X)) → ACTIVE(X)
ACTIVE(leq(X1, X2)) → ACTIVE(X1)
ACTIVE(leq(X1, X2)) → ACTIVE(X2)
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(diff(X1, X2)) → ACTIVE(X1)
ACTIVE(diff(X1, X2)) → ACTIVE(X2)

The TRS R consists of the following rules:

active(p(0)) → mark(0)
active(p(s(X))) → mark(X)
active(leq(0, Y)) → mark(true)
active(leq(s(X), 0)) → mark(false)
active(leq(s(X), s(Y))) → mark(leq(X, Y))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(diff(X, Y)) → mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) → p(active(X))
active(s(X)) → s(active(X))
active(leq(X1, X2)) → leq(active(X1), X2)
active(leq(X1, X2)) → leq(X1, active(X2))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(diff(X1, X2)) → diff(active(X1), X2)
active(diff(X1, X2)) → diff(X1, active(X2))
p(mark(X)) → mark(p(X))
s(mark(X)) → mark(s(X))
leq(mark(X1), X2) → mark(leq(X1, X2))
leq(X1, mark(X2)) → mark(leq(X1, X2))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
diff(mark(X1), X2) → mark(diff(X1, X2))
diff(X1, mark(X2)) → mark(diff(X1, X2))
proper(p(X)) → p(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(leq(X1, X2)) → leq(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) → diff(proper(X1), proper(X2))
p(ok(X)) → ok(p(X))
s(ok(X)) → ok(s(X))
leq(ok(X1), ok(X2)) → ok(leq(X1, X2))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
diff(ok(X1), ok(X2)) → ok(diff(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(50) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(leq(X1, X2)) → ACTIVE(X1)
ACTIVE(leq(X1, X2)) → ACTIVE(X2)
ACTIVE(diff(X1, X2)) → ACTIVE(X1)
ACTIVE(diff(X1, X2)) → ACTIVE(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
s(x1)  =  x1
p(x1)  =  x1
leq(x1, x2)  =  leq(x1, x2)
if(x1, x2, x3)  =  x1
diff(x1, x2)  =  diff(x1, x2)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
leq2: multiset
diff2: multiset

The following usable rules [FROCOS05] were oriented: none

(51) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(p(X)) → ACTIVE(X)
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(p(0)) → mark(0)
active(p(s(X))) → mark(X)
active(leq(0, Y)) → mark(true)
active(leq(s(X), 0)) → mark(false)
active(leq(s(X), s(Y))) → mark(leq(X, Y))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(diff(X, Y)) → mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) → p(active(X))
active(s(X)) → s(active(X))
active(leq(X1, X2)) → leq(active(X1), X2)
active(leq(X1, X2)) → leq(X1, active(X2))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(diff(X1, X2)) → diff(active(X1), X2)
active(diff(X1, X2)) → diff(X1, active(X2))
p(mark(X)) → mark(p(X))
s(mark(X)) → mark(s(X))
leq(mark(X1), X2) → mark(leq(X1, X2))
leq(X1, mark(X2)) → mark(leq(X1, X2))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
diff(mark(X1), X2) → mark(diff(X1, X2))
diff(X1, mark(X2)) → mark(diff(X1, X2))
proper(p(X)) → p(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(leq(X1, X2)) → leq(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) → diff(proper(X1), proper(X2))
p(ok(X)) → ok(p(X))
s(ok(X)) → ok(s(X))
leq(ok(X1), ok(X2)) → ok(leq(X1, X2))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
diff(ok(X1), ok(X2)) → ok(diff(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(52) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(s(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
s(x1)  =  s(x1)
p(x1)  =  x1
if(x1, x2, x3)  =  x1

Recursive path order with status [RPO].
Precedence:
trivial

Status:
s1: multiset

The following usable rules [FROCOS05] were oriented: none

(53) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(p(X)) → ACTIVE(X)
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(p(0)) → mark(0)
active(p(s(X))) → mark(X)
active(leq(0, Y)) → mark(true)
active(leq(s(X), 0)) → mark(false)
active(leq(s(X), s(Y))) → mark(leq(X, Y))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(diff(X, Y)) → mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) → p(active(X))
active(s(X)) → s(active(X))
active(leq(X1, X2)) → leq(active(X1), X2)
active(leq(X1, X2)) → leq(X1, active(X2))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(diff(X1, X2)) → diff(active(X1), X2)
active(diff(X1, X2)) → diff(X1, active(X2))
p(mark(X)) → mark(p(X))
s(mark(X)) → mark(s(X))
leq(mark(X1), X2) → mark(leq(X1, X2))
leq(X1, mark(X2)) → mark(leq(X1, X2))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
diff(mark(X1), X2) → mark(diff(X1, X2))
diff(X1, mark(X2)) → mark(diff(X1, X2))
proper(p(X)) → p(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(leq(X1, X2)) → leq(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) → diff(proper(X1), proper(X2))
p(ok(X)) → ok(p(X))
s(ok(X)) → ok(s(X))
leq(ok(X1), ok(X2)) → ok(leq(X1, X2))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
diff(ok(X1), ok(X2)) → ok(diff(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(54) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(p(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
p(x1)  =  p(x1)
if(x1, x2, x3)  =  x1

Recursive path order with status [RPO].
Precedence:
trivial

Status:
p1: multiset

The following usable rules [FROCOS05] were oriented: none

(55) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(p(0)) → mark(0)
active(p(s(X))) → mark(X)
active(leq(0, Y)) → mark(true)
active(leq(s(X), 0)) → mark(false)
active(leq(s(X), s(Y))) → mark(leq(X, Y))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(diff(X, Y)) → mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) → p(active(X))
active(s(X)) → s(active(X))
active(leq(X1, X2)) → leq(active(X1), X2)
active(leq(X1, X2)) → leq(X1, active(X2))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(diff(X1, X2)) → diff(active(X1), X2)
active(diff(X1, X2)) → diff(X1, active(X2))
p(mark(X)) → mark(p(X))
s(mark(X)) → mark(s(X))
leq(mark(X1), X2) → mark(leq(X1, X2))
leq(X1, mark(X2)) → mark(leq(X1, X2))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
diff(mark(X1), X2) → mark(diff(X1, X2))
diff(X1, mark(X2)) → mark(diff(X1, X2))
proper(p(X)) → p(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(leq(X1, X2)) → leq(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) → diff(proper(X1), proper(X2))
p(ok(X)) → ok(p(X))
s(ok(X)) → ok(s(X))
leq(ok(X1), ok(X2)) → ok(leq(X1, X2))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
diff(ok(X1), ok(X2)) → ok(diff(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
if(x1, x2, x3)  =  if(x1)

Recursive path order with status [RPO].
Precedence:
if1 > ACTIVE1

Status:
ACTIVE1: [1]
if1: multiset

The following usable rules [FROCOS05] were oriented: none

(57) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(p(0)) → mark(0)
active(p(s(X))) → mark(X)
active(leq(0, Y)) → mark(true)
active(leq(s(X), 0)) → mark(false)
active(leq(s(X), s(Y))) → mark(leq(X, Y))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(diff(X, Y)) → mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) → p(active(X))
active(s(X)) → s(active(X))
active(leq(X1, X2)) → leq(active(X1), X2)
active(leq(X1, X2)) → leq(X1, active(X2))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(diff(X1, X2)) → diff(active(X1), X2)
active(diff(X1, X2)) → diff(X1, active(X2))
p(mark(X)) → mark(p(X))
s(mark(X)) → mark(s(X))
leq(mark(X1), X2) → mark(leq(X1, X2))
leq(X1, mark(X2)) → mark(leq(X1, X2))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
diff(mark(X1), X2) → mark(diff(X1, X2))
diff(X1, mark(X2)) → mark(diff(X1, X2))
proper(p(X)) → p(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(leq(X1, X2)) → leq(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) → diff(proper(X1), proper(X2))
p(ok(X)) → ok(p(X))
s(ok(X)) → ok(s(X))
leq(ok(X1), ok(X2)) → ok(leq(X1, X2))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
diff(ok(X1), ok(X2)) → ok(diff(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(58) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(59) TRUE

(60) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(p(0)) → mark(0)
active(p(s(X))) → mark(X)
active(leq(0, Y)) → mark(true)
active(leq(s(X), 0)) → mark(false)
active(leq(s(X), s(Y))) → mark(leq(X, Y))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(diff(X, Y)) → mark(if(leq(X, Y), 0, s(diff(p(X), Y))))
active(p(X)) → p(active(X))
active(s(X)) → s(active(X))
active(leq(X1, X2)) → leq(active(X1), X2)
active(leq(X1, X2)) → leq(X1, active(X2))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(diff(X1, X2)) → diff(active(X1), X2)
active(diff(X1, X2)) → diff(X1, active(X2))
p(mark(X)) → mark(p(X))
s(mark(X)) → mark(s(X))
leq(mark(X1), X2) → mark(leq(X1, X2))
leq(X1, mark(X2)) → mark(leq(X1, X2))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
diff(mark(X1), X2) → mark(diff(X1, X2))
diff(X1, mark(X2)) → mark(diff(X1, X2))
proper(p(X)) → p(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(leq(X1, X2)) → leq(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(diff(X1, X2)) → diff(proper(X1), proper(X2))
p(ok(X)) → ok(p(X))
s(ok(X)) → ok(s(X))
leq(ok(X1), ok(X2)) → ok(leq(X1, X2))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
diff(ok(X1), ok(X2)) → ok(diff(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.