(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(eq(0, 0)) → MARK(true)
ACTIVE(eq(s(X), s(Y))) → MARK(eq(X, Y))
ACTIVE(eq(s(X), s(Y))) → EQ(X, Y)
ACTIVE(eq(X, Y)) → MARK(false)
ACTIVE(inf(X)) → MARK(cons(X, inf(s(X))))
ACTIVE(inf(X)) → CONS(X, inf(s(X)))
ACTIVE(inf(X)) → INF(s(X))
ACTIVE(inf(X)) → S(X)
ACTIVE(take(0, X)) → MARK(nil)
ACTIVE(take(s(X), cons(Y, L))) → MARK(cons(Y, take(X, L)))
ACTIVE(take(s(X), cons(Y, L))) → CONS(Y, take(X, L))
ACTIVE(take(s(X), cons(Y, L))) → TAKE(X, L)
ACTIVE(length(nil)) → MARK(0)
ACTIVE(length(cons(X, L))) → MARK(s(length(L)))
ACTIVE(length(cons(X, L))) → S(length(L))
ACTIVE(length(cons(X, L))) → LENGTH(L)
MARK(eq(X1, X2)) → ACTIVE(eq(X1, X2))
MARK(0) → ACTIVE(0)
MARK(true) → ACTIVE(true)
MARK(s(X)) → ACTIVE(s(X))
MARK(false) → ACTIVE(false)
MARK(inf(X)) → ACTIVE(inf(mark(X)))
MARK(inf(X)) → INF(mark(X))
MARK(inf(X)) → MARK(X)
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(take(X1, X2)) → TAKE(mark(X1), mark(X2))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(nil) → ACTIVE(nil)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(length(X)) → LENGTH(mark(X))
MARK(length(X)) → MARK(X)
EQ(mark(X1), X2) → EQ(X1, X2)
EQ(X1, mark(X2)) → EQ(X1, X2)
EQ(active(X1), X2) → EQ(X1, X2)
EQ(X1, active(X2)) → EQ(X1, X2)
S(mark(X)) → S(X)
S(active(X)) → S(X)
INF(mark(X)) → INF(X)
INF(active(X)) → INF(X)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)
LENGTH(mark(X)) → LENGTH(X)
LENGTH(active(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 19 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH(active(X)) → LENGTH(X)
LENGTH(mark(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LENGTH(active(X)) → LENGTH(X)
LENGTH(mark(X)) → LENGTH(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LENGTH(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  mark(x1)
eq(x1, x2)  =  eq
0  =  0
true  =  true
s(x1)  =  s
false  =  false
inf(x1)  =  inf
cons(x1, x2)  =  cons
take(x1, x2)  =  take
nil  =  nil
length(x1)  =  length

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, mark1]
eq > true
eq > false
inf > cons
take > cons
take > nil
length > 0
length > s

Status:
trivial


The following usable rules [FROCOS05] were oriented:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
eq(x1, x2)  =  eq
0  =  0
true  =  true
s(x1)  =  s
false  =  false
inf(x1)  =  inf
cons(x1, x2)  =  cons
take(x1, x2)  =  take
nil  =  nil
length(x1)  =  length

Lexicographic path order with status [LPO].
Quasi-Precedence:
[mark1, active1]
eq > true
eq > false
inf > cons
take > cons
take > nil
length > 0
length > s

Status:
trivial


The following usable rules [FROCOS05] were oriented:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INF(active(X)) → INF(X)
INF(mark(X)) → INF(X)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQ(X1, mark(X2)) → EQ(X1, X2)
EQ(mark(X1), X2) → EQ(X1, X2)
EQ(active(X1), X2) → EQ(X1, X2)
EQ(X1, active(X2)) → EQ(X1, X2)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(eq(s(X), s(Y))) → MARK(eq(X, Y))
MARK(eq(X1, X2)) → ACTIVE(eq(X1, X2))
ACTIVE(inf(X)) → MARK(cons(X, inf(s(X))))
MARK(s(X)) → ACTIVE(s(X))
ACTIVE(take(s(X), cons(Y, L))) → MARK(cons(Y, take(X, L)))
MARK(inf(X)) → ACTIVE(inf(mark(X)))
ACTIVE(length(cons(X, L))) → MARK(s(length(L)))
MARK(inf(X)) → MARK(X)
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(length(X)) → MARK(X)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.