(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__eq(0, 0) → true
a__eq(s(X), s(Y)) → a__eq(X, Y)
a__eq(X, Y) → false
a__inf(X) → cons(X, inf(s(X)))
a__take(0, X) → nil
a__take(s(X), cons(Y, L)) → cons(Y, take(X, L))
a__length(nil) → 0
a__length(cons(X, L)) → s(length(L))
mark(eq(X1, X2)) → a__eq(X1, X2)
mark(inf(X)) → a__inf(mark(X))
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(length(X)) → a__length(mark(X))
mark(0) → 0
mark(true) → true
mark(s(X)) → s(X)
mark(false) → false
mark(cons(X1, X2)) → cons(X1, X2)
mark(nil) → nil
a__eq(X1, X2) → eq(X1, X2)
a__inf(X) → inf(X)
a__take(X1, X2) → take(X1, X2)
a__length(X) → length(X)

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Lexicographic path order with status [LPO].
Quasi-Precedence:
[aeq2, false, atake2, take2, mark1] > [0, nil] > [s1, cons2, inf1]
[aeq2, false, atake2, take2, mark1] > true > [s1, cons2, inf1]
[aeq2, false, atake2, take2, mark1] > ainf1 > [s1, cons2, inf1]
[aeq2, false, atake2, take2, mark1] > alength1 > length1 > [s1, cons2, inf1]
[aeq2, false, atake2, take2, mark1] > eq2 > [s1, cons2, inf1]

Status:
aeq2: [2,1]
0: []
true: []
s1: [1]
false: []
ainf1: [1]
cons2: [2,1]
inf1: [1]
atake2: [2,1]
nil: []
take2: [2,1]
alength1: [1]
length1: [1]
mark1: [1]
eq2: [2,1]

With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

a__eq(0, 0) → true
a__eq(s(X), s(Y)) → a__eq(X, Y)
a__eq(X, Y) → false
a__inf(X) → cons(X, inf(s(X)))
a__take(0, X) → nil
a__take(s(X), cons(Y, L)) → cons(Y, take(X, L))
a__length(nil) → 0
a__length(cons(X, L)) → s(length(L))
mark(eq(X1, X2)) → a__eq(X1, X2)
mark(inf(X)) → a__inf(mark(X))
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(length(X)) → a__length(mark(X))
mark(0) → 0
mark(true) → true
mark(s(X)) → s(X)
mark(false) → false
mark(cons(X1, X2)) → cons(X1, X2)
mark(nil) → nil
a__eq(X1, X2) → eq(X1, X2)
a__inf(X) → inf(X)
a__length(X) → length(X)


(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__take(X1, X2) → take(X1, X2)

Q is empty.

(3) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Lexicographic path order with status [LPO].
Quasi-Precedence:
atake2 > take2

Status:
atake2: [2,1]
take2: [2,1]

With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

a__take(X1, X2) → take(X1, X2)


(4) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(5) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(6) TRUE