(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__eq(0, 0) → true
a__eq(s(X), s(Y)) → a__eq(X, Y)
a__eq(X, Y) → false
a__inf(X) → cons(X, inf(s(X)))
a__take(0, X) → nil
a__take(s(X), cons(Y, L)) → cons(Y, take(X, L))
a__length(nil) → 0
a__length(cons(X, L)) → s(length(L))
mark(eq(X1, X2)) → a__eq(X1, X2)
mark(inf(X)) → a__inf(mark(X))
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(length(X)) → a__length(mark(X))
mark(0) → 0
mark(true) → true
mark(s(X)) → s(X)
mark(false) → false
mark(cons(X1, X2)) → cons(X1, X2)
mark(nil) → nil
a__eq(X1, X2) → eq(X1, X2)
a__inf(X) → inf(X)
a__take(X1, X2) → take(X1, X2)
a__length(X) → length(X)

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Lexicographic path order with status [LPO].
Precedence:
mark1 > aeq2 > true
mark1 > aeq2 > false
mark1 > aeq2 > eq2
mark1 > ainf1 > cons2 > s1
mark1 > ainf1 > cons2 > take2
mark1 > ainf1 > inf1
mark1 > atake2 > cons2 > s1
mark1 > atake2 > cons2 > take2
mark1 > atake2 > nil
mark1 > alength1 > 0
mark1 > alength1 > s1
mark1 > alength1 > length1

Status:
eq2: [1,2]
ainf1: [1]
true: []
mark1: [1]
take2: [1,2]
atake2: [1,2]
0: []
inf1: [1]
cons2: [1,2]
alength1: [1]
false: []
s1: [1]
aeq2: [1,2]
length1: [1]
nil: []
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

a__eq(0, 0) → true
a__eq(s(X), s(Y)) → a__eq(X, Y)
a__eq(X, Y) → false
a__inf(X) → cons(X, inf(s(X)))
a__take(0, X) → nil
a__take(s(X), cons(Y, L)) → cons(Y, take(X, L))
a__length(nil) → 0
a__length(cons(X, L)) → s(length(L))
mark(eq(X1, X2)) → a__eq(X1, X2)
mark(inf(X)) → a__inf(mark(X))
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(length(X)) → a__length(mark(X))
mark(0) → 0
mark(true) → true
mark(s(X)) → s(X)
mark(false) → false
mark(cons(X1, X2)) → cons(X1, X2)
mark(nil) → nil
a__eq(X1, X2) → eq(X1, X2)
a__inf(X) → inf(X)
a__take(X1, X2) → take(X1, X2)
a__length(X) → length(X)


(2) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(3) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(4) TRUE