(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

2nd(cons(X, n__cons(Y, Z))) → activate(Y)
from(X) → cons(X, n__from(s(X)))
cons(X1, X2) → n__cons(X1, X2)
from(X) → n__from(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__from(X)) → from(X)
activate(X) → X

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Recursive Path Order [RPO].
Precedence:
[2nd1, activate1, from1] > cons2 > ncons2 > s1
[2nd1, activate1, from1] > nfrom1 > s1

With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

2nd(cons(X, n__cons(Y, Z))) → activate(Y)
from(X) → cons(X, n__from(s(X)))
cons(X1, X2) → n__cons(X1, X2)
from(X) → n__from(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__from(X)) → from(X)
activate(X) → X


(2) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(3) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(4) TRUE