(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

2nd(cons(X, n__cons(Y, Z))) → activate(Y)
from(X) → cons(X, n__from(n__s(X)))
cons(X1, X2) → n__cons(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Recursive Path Order [RPO].
Precedence:
2nd1 > activate1 > from1 > [cons2, ncons2, nfrom1, ns1, s1]

With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

2nd(cons(X, n__cons(Y, Z))) → activate(Y)
from(X) → cons(X, n__from(n__s(X)))
from(X) → n__from(X)
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X


(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)

Q is empty.

(3) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Recursive Path Order [RPO].
Precedence:
cons2 > ncons2
s1 > ns1 > ncons2

With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)


(4) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(5) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(6) TRUE