(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(from(X)) → CONS(X, from(s(X)))
ACTIVE(from(X)) → FROM(s(X))
ACTIVE(from(X)) → S(X)
ACTIVE(2ndspos(0, Z)) → MARK(rnil)
ACTIVE(2ndspos(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
ACTIVE(2ndspos(s(N), cons(X, cons(Y, Z)))) → RCONS(posrecip(Y), 2ndsneg(N, Z))
ACTIVE(2ndspos(s(N), cons(X, cons(Y, Z)))) → POSRECIP(Y)
ACTIVE(2ndspos(s(N), cons(X, cons(Y, Z)))) → 2NDSNEG(N, Z)
ACTIVE(2ndsneg(0, Z)) → MARK(rnil)
ACTIVE(2ndsneg(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
ACTIVE(2ndsneg(s(N), cons(X, cons(Y, Z)))) → RCONS(negrecip(Y), 2ndspos(N, Z))
ACTIVE(2ndsneg(s(N), cons(X, cons(Y, Z)))) → NEGRECIP(Y)
ACTIVE(2ndsneg(s(N), cons(X, cons(Y, Z)))) → 2NDSPOS(N, Z)
ACTIVE(pi(X)) → MARK(2ndspos(X, from(0)))
ACTIVE(pi(X)) → 2NDSPOS(X, from(0))
ACTIVE(pi(X)) → FROM(0)
ACTIVE(plus(0, Y)) → MARK(Y)
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
ACTIVE(plus(s(X), Y)) → S(plus(X, Y))
ACTIVE(plus(s(X), Y)) → PLUS(X, Y)
ACTIVE(times(0, Y)) → MARK(0)
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
ACTIVE(times(s(X), Y)) → PLUS(Y, times(X, Y))
ACTIVE(times(s(X), Y)) → TIMES(X, Y)
ACTIVE(square(X)) → MARK(times(X, X))
ACTIVE(square(X)) → TIMES(X, X)
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(from(X)) → FROM(mark(X))
MARK(from(X)) → MARK(X)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
MARK(2ndspos(X1, X2)) → 2NDSPOS(mark(X1), mark(X2))
MARK(2ndspos(X1, X2)) → MARK(X1)
MARK(2ndspos(X1, X2)) → MARK(X2)
MARK(0) → ACTIVE(0)
MARK(rnil) → ACTIVE(rnil)
MARK(rcons(X1, X2)) → ACTIVE(rcons(mark(X1), mark(X2)))
MARK(rcons(X1, X2)) → RCONS(mark(X1), mark(X2))
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
MARK(posrecip(X)) → ACTIVE(posrecip(mark(X)))
MARK(posrecip(X)) → POSRECIP(mark(X))
MARK(posrecip(X)) → MARK(X)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
MARK(2ndsneg(X1, X2)) → 2NDSNEG(mark(X1), mark(X2))
MARK(2ndsneg(X1, X2)) → MARK(X1)
MARK(2ndsneg(X1, X2)) → MARK(X2)
MARK(negrecip(X)) → ACTIVE(negrecip(mark(X)))
MARK(negrecip(X)) → NEGRECIP(mark(X))
MARK(negrecip(X)) → MARK(X)
MARK(pi(X)) → ACTIVE(pi(mark(X)))
MARK(pi(X)) → PI(mark(X))
MARK(pi(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(times(X1, X2)) → TIMES(mark(X1), mark(X2))
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
MARK(square(X)) → ACTIVE(square(mark(X)))
MARK(square(X)) → SQUARE(mark(X))
MARK(square(X)) → MARK(X)
FROM(mark(X)) → FROM(X)
FROM(active(X)) → FROM(X)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
S(mark(X)) → S(X)
S(active(X)) → S(X)
2NDSPOS(mark(X1), X2) → 2NDSPOS(X1, X2)
2NDSPOS(X1, mark(X2)) → 2NDSPOS(X1, X2)
2NDSPOS(active(X1), X2) → 2NDSPOS(X1, X2)
2NDSPOS(X1, active(X2)) → 2NDSPOS(X1, X2)
RCONS(mark(X1), X2) → RCONS(X1, X2)
RCONS(X1, mark(X2)) → RCONS(X1, X2)
RCONS(active(X1), X2) → RCONS(X1, X2)
RCONS(X1, active(X2)) → RCONS(X1, X2)
POSRECIP(mark(X)) → POSRECIP(X)
POSRECIP(active(X)) → POSRECIP(X)
2NDSNEG(mark(X1), X2) → 2NDSNEG(X1, X2)
2NDSNEG(X1, mark(X2)) → 2NDSNEG(X1, X2)
2NDSNEG(active(X1), X2) → 2NDSNEG(X1, X2)
2NDSNEG(X1, active(X2)) → 2NDSNEG(X1, X2)
NEGRECIP(mark(X)) → NEGRECIP(X)
NEGRECIP(active(X)) → NEGRECIP(X)
PI(mark(X)) → PI(X)
PI(active(X)) → PI(X)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)
TIMES(mark(X1), X2) → TIMES(X1, X2)
TIMES(X1, mark(X2)) → TIMES(X1, X2)
TIMES(active(X1), X2) → TIMES(X1, X2)
TIMES(X1, active(X2)) → TIMES(X1, X2)
SQUARE(mark(X)) → SQUARE(X)
SQUARE(active(X)) → SQUARE(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 13 SCCs with 33 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SQUARE(active(X)) → SQUARE(X)
SQUARE(mark(X)) → SQUARE(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SQUARE(active(X)) → SQUARE(X)
SQUARE(mark(X)) → SQUARE(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • SQUARE(active(X)) → SQUARE(X)
    The graph contains the following edges 1 > 1

  • SQUARE(mark(X)) → SQUARE(X)
    The graph contains the following edges 1 > 1

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TIMES(X1, mark(X2)) → TIMES(X1, X2)
TIMES(mark(X1), X2) → TIMES(X1, X2)
TIMES(active(X1), X2) → TIMES(X1, X2)
TIMES(X1, active(X2)) → TIMES(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TIMES(X1, mark(X2)) → TIMES(X1, X2)
TIMES(mark(X1), X2) → TIMES(X1, X2)
TIMES(active(X1), X2) → TIMES(X1, X2)
TIMES(X1, active(X2)) → TIMES(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • TIMES(X1, mark(X2)) → TIMES(X1, X2)
    The graph contains the following edges 1 >= 1, 2 > 2

  • TIMES(mark(X1), X2) → TIMES(X1, X2)
    The graph contains the following edges 1 > 1, 2 >= 2

  • TIMES(active(X1), X2) → TIMES(X1, X2)
    The graph contains the following edges 1 > 1, 2 >= 2

  • TIMES(X1, active(X2)) → TIMES(X1, X2)
    The graph contains the following edges 1 >= 1, 2 > 2

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • PLUS(X1, mark(X2)) → PLUS(X1, X2)
    The graph contains the following edges 1 >= 1, 2 > 2

  • PLUS(mark(X1), X2) → PLUS(X1, X2)
    The graph contains the following edges 1 > 1, 2 >= 2

  • PLUS(active(X1), X2) → PLUS(X1, X2)
    The graph contains the following edges 1 > 1, 2 >= 2

  • PLUS(X1, active(X2)) → PLUS(X1, X2)
    The graph contains the following edges 1 >= 1, 2 > 2

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PI(active(X)) → PI(X)
PI(mark(X)) → PI(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PI(active(X)) → PI(X)
PI(mark(X)) → PI(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • PI(active(X)) → PI(X)
    The graph contains the following edges 1 > 1

  • PI(mark(X)) → PI(X)
    The graph contains the following edges 1 > 1

(24) TRUE

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NEGRECIP(active(X)) → NEGRECIP(X)
NEGRECIP(mark(X)) → NEGRECIP(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NEGRECIP(active(X)) → NEGRECIP(X)
NEGRECIP(mark(X)) → NEGRECIP(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • NEGRECIP(active(X)) → NEGRECIP(X)
    The graph contains the following edges 1 > 1

  • NEGRECIP(mark(X)) → NEGRECIP(X)
    The graph contains the following edges 1 > 1

(29) TRUE

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

2NDSNEG(X1, mark(X2)) → 2NDSNEG(X1, X2)
2NDSNEG(mark(X1), X2) → 2NDSNEG(X1, X2)
2NDSNEG(active(X1), X2) → 2NDSNEG(X1, X2)
2NDSNEG(X1, active(X2)) → 2NDSNEG(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

2NDSNEG(X1, mark(X2)) → 2NDSNEG(X1, X2)
2NDSNEG(mark(X1), X2) → 2NDSNEG(X1, X2)
2NDSNEG(active(X1), X2) → 2NDSNEG(X1, X2)
2NDSNEG(X1, active(X2)) → 2NDSNEG(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • 2NDSNEG(X1, mark(X2)) → 2NDSNEG(X1, X2)
    The graph contains the following edges 1 >= 1, 2 > 2

  • 2NDSNEG(mark(X1), X2) → 2NDSNEG(X1, X2)
    The graph contains the following edges 1 > 1, 2 >= 2

  • 2NDSNEG(active(X1), X2) → 2NDSNEG(X1, X2)
    The graph contains the following edges 1 > 1, 2 >= 2

  • 2NDSNEG(X1, active(X2)) → 2NDSNEG(X1, X2)
    The graph contains the following edges 1 >= 1, 2 > 2

(34) TRUE

(35) Obligation:

Q DP problem:
The TRS P consists of the following rules:

POSRECIP(active(X)) → POSRECIP(X)
POSRECIP(mark(X)) → POSRECIP(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

POSRECIP(active(X)) → POSRECIP(X)
POSRECIP(mark(X)) → POSRECIP(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • POSRECIP(active(X)) → POSRECIP(X)
    The graph contains the following edges 1 > 1

  • POSRECIP(mark(X)) → POSRECIP(X)
    The graph contains the following edges 1 > 1

(39) TRUE

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

RCONS(X1, mark(X2)) → RCONS(X1, X2)
RCONS(mark(X1), X2) → RCONS(X1, X2)
RCONS(active(X1), X2) → RCONS(X1, X2)
RCONS(X1, active(X2)) → RCONS(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

RCONS(X1, mark(X2)) → RCONS(X1, X2)
RCONS(mark(X1), X2) → RCONS(X1, X2)
RCONS(active(X1), X2) → RCONS(X1, X2)
RCONS(X1, active(X2)) → RCONS(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • RCONS(X1, mark(X2)) → RCONS(X1, X2)
    The graph contains the following edges 1 >= 1, 2 > 2

  • RCONS(mark(X1), X2) → RCONS(X1, X2)
    The graph contains the following edges 1 > 1, 2 >= 2

  • RCONS(active(X1), X2) → RCONS(X1, X2)
    The graph contains the following edges 1 > 1, 2 >= 2

  • RCONS(X1, active(X2)) → RCONS(X1, X2)
    The graph contains the following edges 1 >= 1, 2 > 2

(44) TRUE

(45) Obligation:

Q DP problem:
The TRS P consists of the following rules:

2NDSPOS(X1, mark(X2)) → 2NDSPOS(X1, X2)
2NDSPOS(mark(X1), X2) → 2NDSPOS(X1, X2)
2NDSPOS(active(X1), X2) → 2NDSPOS(X1, X2)
2NDSPOS(X1, active(X2)) → 2NDSPOS(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(46) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(47) Obligation:

Q DP problem:
The TRS P consists of the following rules:

2NDSPOS(X1, mark(X2)) → 2NDSPOS(X1, X2)
2NDSPOS(mark(X1), X2) → 2NDSPOS(X1, X2)
2NDSPOS(active(X1), X2) → 2NDSPOS(X1, X2)
2NDSPOS(X1, active(X2)) → 2NDSPOS(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(48) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • 2NDSPOS(X1, mark(X2)) → 2NDSPOS(X1, X2)
    The graph contains the following edges 1 >= 1, 2 > 2

  • 2NDSPOS(mark(X1), X2) → 2NDSPOS(X1, X2)
    The graph contains the following edges 1 > 1, 2 >= 2

  • 2NDSPOS(active(X1), X2) → 2NDSPOS(X1, X2)
    The graph contains the following edges 1 > 1, 2 >= 2

  • 2NDSPOS(X1, active(X2)) → 2NDSPOS(X1, X2)
    The graph contains the following edges 1 >= 1, 2 > 2

(49) TRUE

(50) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(51) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(53) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • S(active(X)) → S(X)
    The graph contains the following edges 1 > 1

  • S(mark(X)) → S(X)
    The graph contains the following edges 1 > 1

(54) TRUE

(55) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(57) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(58) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • CONS(X1, mark(X2)) → CONS(X1, X2)
    The graph contains the following edges 1 >= 1, 2 > 2

  • CONS(mark(X1), X2) → CONS(X1, X2)
    The graph contains the following edges 1 > 1, 2 >= 2

  • CONS(active(X1), X2) → CONS(X1, X2)
    The graph contains the following edges 1 > 1, 2 >= 2

  • CONS(X1, active(X2)) → CONS(X1, X2)
    The graph contains the following edges 1 >= 1, 2 > 2

(59) TRUE

(60) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(active(X)) → FROM(X)
FROM(mark(X)) → FROM(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(61) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(62) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(active(X)) → FROM(X)
FROM(mark(X)) → FROM(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(63) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • FROM(active(X)) → FROM(X)
    The graph contains the following edges 1 > 1

  • FROM(mark(X)) → FROM(X)
    The graph contains the following edges 1 > 1

(64) TRUE

(65) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(from(X)) → MARK(X)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(2ndspos(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(2ndsneg(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(pi(X)) → MARK(2ndspos(X, from(0)))
MARK(2ndspos(X1, X2)) → MARK(X1)
MARK(2ndspos(X1, X2)) → MARK(X2)
MARK(rcons(X1, X2)) → ACTIVE(rcons(mark(X1), mark(X2)))
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
MARK(posrecip(X)) → ACTIVE(posrecip(mark(X)))
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(posrecip(X)) → MARK(X)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(2ndsneg(X1, X2)) → MARK(X1)
MARK(2ndsneg(X1, X2)) → MARK(X2)
MARK(negrecip(X)) → ACTIVE(negrecip(mark(X)))
ACTIVE(square(X)) → MARK(times(X, X))
MARK(negrecip(X)) → MARK(X)
MARK(pi(X)) → ACTIVE(pi(mark(X)))
MARK(pi(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
MARK(square(X)) → ACTIVE(square(mark(X)))
MARK(square(X)) → MARK(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(66) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(rcons(X1, X2)) → ACTIVE(rcons(mark(X1), mark(X2)))
MARK(posrecip(X)) → ACTIVE(posrecip(mark(X)))
MARK(negrecip(X)) → ACTIVE(negrecip(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(2ndsneg(x1, x2)) = 1   
POL(2ndspos(x1, x2)) = 1   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = 1   
POL(active(x1)) = 0   
POL(cons(x1, x2)) = 0   
POL(from(x1)) = 1   
POL(mark(x1)) = 0   
POL(negrecip(x1)) = 0   
POL(pi(x1)) = 1   
POL(plus(x1, x2)) = 1   
POL(posrecip(x1)) = 0   
POL(rcons(x1, x2)) = 0   
POL(rnil) = 0   
POL(s(x1)) = 0   
POL(square(x1)) = 1   
POL(times(x1, x2)) = 1   

The following usable rules [FROCOS05] were oriented:

square(active(X)) → square(X)
square(mark(X)) → square(X)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
from(active(X)) → from(X)
from(mark(X)) → from(X)

(67) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(from(X)) → MARK(X)
ACTIVE(2ndspos(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(2ndsneg(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(pi(X)) → MARK(2ndspos(X, from(0)))
MARK(2ndspos(X1, X2)) → MARK(X1)
MARK(2ndspos(X1, X2)) → MARK(X2)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(posrecip(X)) → MARK(X)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(2ndsneg(X1, X2)) → MARK(X1)
MARK(2ndsneg(X1, X2)) → MARK(X2)
ACTIVE(square(X)) → MARK(times(X, X))
MARK(negrecip(X)) → MARK(X)
MARK(pi(X)) → ACTIVE(pi(mark(X)))
MARK(pi(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
MARK(square(X)) → ACTIVE(square(mark(X)))
MARK(square(X)) → MARK(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(68) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(pi(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(MARK(x1)) = 0A + 0A·x1

POL(from(x1)) = 0A + 0A·x1

POL(ACTIVE(x1)) = -I + 0A·x1

POL(mark(x1)) = 0A + 0A·x1

POL(cons(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(s(x1)) = 0A + 0A·x1

POL(2ndspos(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(rcons(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(posrecip(x1)) = -I + 0A·x1

POL(2ndsneg(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(negrecip(x1)) = -I + 0A·x1

POL(pi(x1)) = 2A + 1A·x1

POL(0) = 2A

POL(plus(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(times(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(square(x1)) = 0A + 0A·x1

POL(active(x1)) = -I + 0A·x1

POL(rnil) = 2A

The following usable rules [FROCOS05] were oriented:

active(2ndsneg(0, Z)) → mark(rnil)
square(active(X)) → square(X)
square(mark(X)) → square(X)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(square(X)) → mark(times(X, X))
mark(s(X)) → active(s(mark(X)))
mark(square(X)) → active(square(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(from(X)) → active(from(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
active(times(0, Y)) → mark(0)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
mark(rnil) → active(rnil)
mark(0) → active(0)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
from(active(X)) → from(X)
from(mark(X)) → from(X)

(69) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(from(X)) → MARK(X)
ACTIVE(2ndspos(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(2ndsneg(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(pi(X)) → MARK(2ndspos(X, from(0)))
MARK(2ndspos(X1, X2)) → MARK(X1)
MARK(2ndspos(X1, X2)) → MARK(X2)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(posrecip(X)) → MARK(X)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(2ndsneg(X1, X2)) → MARK(X1)
MARK(2ndsneg(X1, X2)) → MARK(X2)
ACTIVE(square(X)) → MARK(times(X, X))
MARK(negrecip(X)) → MARK(X)
MARK(pi(X)) → ACTIVE(pi(mark(X)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
MARK(square(X)) → ACTIVE(square(mark(X)))
MARK(square(X)) → MARK(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(70) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(from(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(MARK(x1)) = -I + 0A·x1

POL(from(x1)) = -I + 1A·x1

POL(ACTIVE(x1)) = -I + 0A·x1

POL(mark(x1)) = -I + 0A·x1

POL(cons(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(s(x1)) = -I + 0A·x1

POL(2ndspos(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(rcons(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(posrecip(x1)) = -I + 0A·x1

POL(2ndsneg(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(negrecip(x1)) = -I + 0A·x1

POL(pi(x1)) = 1A + 2A·x1

POL(0) = 0A

POL(plus(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(times(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(square(x1)) = -I + 0A·x1

POL(active(x1)) = -I + 0A·x1

POL(rnil) = 0A

The following usable rules [FROCOS05] were oriented:

active(2ndsneg(0, Z)) → mark(rnil)
square(active(X)) → square(X)
square(mark(X)) → square(X)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(square(X)) → mark(times(X, X))
mark(s(X)) → active(s(mark(X)))
mark(square(X)) → active(square(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(from(X)) → active(from(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
active(times(0, Y)) → mark(0)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
mark(rnil) → active(rnil)
mark(0) → active(0)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
from(active(X)) → from(X)
from(mark(X)) → from(X)

(71) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(2ndspos(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(2ndsneg(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(pi(X)) → MARK(2ndspos(X, from(0)))
MARK(2ndspos(X1, X2)) → MARK(X1)
MARK(2ndspos(X1, X2)) → MARK(X2)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(posrecip(X)) → MARK(X)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(2ndsneg(X1, X2)) → MARK(X1)
MARK(2ndsneg(X1, X2)) → MARK(X2)
ACTIVE(square(X)) → MARK(times(X, X))
MARK(negrecip(X)) → MARK(X)
MARK(pi(X)) → ACTIVE(pi(mark(X)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
MARK(square(X)) → ACTIVE(square(mark(X)))
MARK(square(X)) → MARK(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(72) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(square(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(MARK(x1)) = -I + 0A·x1

POL(from(x1)) = -I + 0A·x1

POL(ACTIVE(x1)) = -I + 0A·x1

POL(mark(x1)) = -I + 0A·x1

POL(cons(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(s(x1)) = -I + 0A·x1

POL(2ndspos(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(rcons(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(posrecip(x1)) = -I + 0A·x1

POL(2ndsneg(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(negrecip(x1)) = -I + 0A·x1

POL(pi(x1)) = 0A + 0A·x1

POL(0) = 0A

POL(plus(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(times(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(square(x1)) = 0A + 5A·x1

POL(active(x1)) = -I + 0A·x1

POL(rnil) = 0A

The following usable rules [FROCOS05] were oriented:

active(2ndsneg(0, Z)) → mark(rnil)
square(active(X)) → square(X)
square(mark(X)) → square(X)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(square(X)) → mark(times(X, X))
mark(s(X)) → active(s(mark(X)))
mark(square(X)) → active(square(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(from(X)) → active(from(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
active(times(0, Y)) → mark(0)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
mark(rnil) → active(rnil)
mark(0) → active(0)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
from(active(X)) → from(X)
from(mark(X)) → from(X)

(73) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(2ndspos(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(2ndsneg(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(pi(X)) → MARK(2ndspos(X, from(0)))
MARK(2ndspos(X1, X2)) → MARK(X1)
MARK(2ndspos(X1, X2)) → MARK(X2)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(posrecip(X)) → MARK(X)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(2ndsneg(X1, X2)) → MARK(X1)
MARK(2ndsneg(X1, X2)) → MARK(X2)
ACTIVE(square(X)) → MARK(times(X, X))
MARK(negrecip(X)) → MARK(X)
MARK(pi(X)) → ACTIVE(pi(mark(X)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
MARK(square(X)) → ACTIVE(square(mark(X)))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(74) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(pi(X)) → MARK(2ndspos(X, from(0)))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(MARK(x1)) = -I + 0A·x1

POL(from(x1)) = 0A + 0A·x1

POL(ACTIVE(x1)) = 0A + 0A·x1

POL(mark(x1)) = 0A + 0A·x1

POL(cons(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(s(x1)) = 0A + 0A·x1

POL(2ndspos(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(rcons(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(posrecip(x1)) = -I + 0A·x1

POL(2ndsneg(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(negrecip(x1)) = -I + 0A·x1

POL(pi(x1)) = 1A + 1A·x1

POL(0) = 0A

POL(plus(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(times(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(square(x1)) = 1A + 0A·x1

POL(active(x1)) = 0A + 0A·x1

POL(rnil) = 0A

The following usable rules [FROCOS05] were oriented:

active(2ndsneg(0, Z)) → mark(rnil)
square(active(X)) → square(X)
square(mark(X)) → square(X)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(square(X)) → mark(times(X, X))
mark(s(X)) → active(s(mark(X)))
mark(square(X)) → active(square(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(from(X)) → active(from(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
active(times(0, Y)) → mark(0)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
mark(rnil) → active(rnil)
mark(0) → active(0)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
from(active(X)) → from(X)
from(mark(X)) → from(X)

(75) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(2ndspos(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(2ndsneg(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
MARK(2ndspos(X1, X2)) → MARK(X1)
MARK(2ndspos(X1, X2)) → MARK(X2)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(posrecip(X)) → MARK(X)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(2ndsneg(X1, X2)) → MARK(X1)
MARK(2ndsneg(X1, X2)) → MARK(X2)
ACTIVE(square(X)) → MARK(times(X, X))
MARK(negrecip(X)) → MARK(X)
MARK(pi(X)) → ACTIVE(pi(mark(X)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
MARK(square(X)) → ACTIVE(square(mark(X)))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(76) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(pi(X)) → ACTIVE(pi(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(2ndsneg(x1, x2)) = 1   
POL(2ndspos(x1, x2)) = 1   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = 1   
POL(active(x1)) = 0   
POL(cons(x1, x2)) = 0   
POL(from(x1)) = 1   
POL(mark(x1)) = 0   
POL(negrecip(x1)) = 0   
POL(pi(x1)) = 0   
POL(plus(x1, x2)) = 1   
POL(posrecip(x1)) = 0   
POL(rcons(x1, x2)) = 0   
POL(rnil) = 0   
POL(s(x1)) = 0   
POL(square(x1)) = 1   
POL(times(x1, x2)) = 1   

The following usable rules [FROCOS05] were oriented:

square(active(X)) → square(X)
square(mark(X)) → square(X)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
from(active(X)) → from(X)
from(mark(X)) → from(X)

(77) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(2ndspos(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(2ndsneg(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
MARK(2ndspos(X1, X2)) → MARK(X1)
MARK(2ndspos(X1, X2)) → MARK(X2)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(posrecip(X)) → MARK(X)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(2ndsneg(X1, X2)) → MARK(X1)
MARK(2ndsneg(X1, X2)) → MARK(X2)
ACTIVE(square(X)) → MARK(times(X, X))
MARK(negrecip(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
MARK(square(X)) → ACTIVE(square(mark(X)))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(78) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(2ndspos(X1, X2)) → MARK(X1)
MARK(2ndsneg(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(MARK(x1)) = -I + 0A·x1

POL(from(x1)) = 0A + 0A·x1

POL(ACTIVE(x1)) = -I + 0A·x1

POL(mark(x1)) = 0A + 0A·x1

POL(cons(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(s(x1)) = -I + 0A·x1

POL(2ndspos(x1, x2)) = 1A + 1A·x1 + 0A·x2

POL(rcons(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(posrecip(x1)) = 0A + 0A·x1

POL(2ndsneg(x1, x2)) = 1A + 1A·x1 + 0A·x2

POL(negrecip(x1)) = -I + 0A·x1

POL(plus(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(0) = 0A

POL(times(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(square(x1)) = 0A + 0A·x1

POL(active(x1)) = -I + 0A·x1

POL(rnil) = 1A

POL(pi(x1)) = 1A + 1A·x1

The following usable rules [FROCOS05] were oriented:

active(2ndsneg(0, Z)) → mark(rnil)
square(active(X)) → square(X)
square(mark(X)) → square(X)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(square(X)) → mark(times(X, X))
mark(s(X)) → active(s(mark(X)))
mark(square(X)) → active(square(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(from(X)) → active(from(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
active(times(0, Y)) → mark(0)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
mark(rnil) → active(rnil)
mark(0) → active(0)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
from(active(X)) → from(X)
from(mark(X)) → from(X)

(79) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(2ndspos(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(2ndsneg(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
MARK(2ndspos(X1, X2)) → MARK(X2)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(posrecip(X)) → MARK(X)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(2ndsneg(X1, X2)) → MARK(X2)
ACTIVE(square(X)) → MARK(times(X, X))
MARK(negrecip(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
MARK(square(X)) → ACTIVE(square(mark(X)))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(80) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(cons(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(MARK(x1)) = -I + 0A·x1

POL(from(x1)) = -I + 1A·x1

POL(ACTIVE(x1)) = -I + 0A·x1

POL(mark(x1)) = -I + 0A·x1

POL(cons(x1, x2)) = -I + 1A·x1 + 0A·x2

POL(s(x1)) = -I + 0A·x1

POL(2ndspos(x1, x2)) = 0A + -I·x1 + 0A·x2

POL(rcons(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(posrecip(x1)) = -I + 0A·x1

POL(2ndsneg(x1, x2)) = 0A + -I·x1 + 0A·x2

POL(negrecip(x1)) = 0A + 0A·x1

POL(plus(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(0) = 0A

POL(times(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(square(x1)) = 0A + 3A·x1

POL(active(x1)) = -I + 0A·x1

POL(rnil) = 0A

POL(pi(x1)) = 3A + -I·x1

The following usable rules [FROCOS05] were oriented:

active(2ndsneg(0, Z)) → mark(rnil)
square(active(X)) → square(X)
square(mark(X)) → square(X)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(square(X)) → mark(times(X, X))
mark(s(X)) → active(s(mark(X)))
mark(square(X)) → active(square(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(from(X)) → active(from(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
active(times(0, Y)) → mark(0)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
mark(rnil) → active(rnil)
mark(0) → active(0)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
from(active(X)) → from(X)
from(mark(X)) → from(X)

(81) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(2ndspos(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
ACTIVE(2ndsneg(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
MARK(2ndspos(X1, X2)) → MARK(X2)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(posrecip(X)) → MARK(X)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(2ndsneg(X1, X2)) → MARK(X2)
ACTIVE(square(X)) → MARK(times(X, X))
MARK(negrecip(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
MARK(square(X)) → ACTIVE(square(mark(X)))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(82) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(square(X)) → MARK(times(X, X))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(MARK(x1)) = 0A + 0A·x1

POL(from(x1)) = 1A + 0A·x1

POL(ACTIVE(x1)) = 0A + 0A·x1

POL(mark(x1)) = -I + 0A·x1

POL(cons(x1, x2)) = 1A + 0A·x1 + 0A·x2

POL(s(x1)) = 0A + 0A·x1

POL(2ndspos(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(rcons(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(posrecip(x1)) = 1A + 0A·x1

POL(2ndsneg(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(negrecip(x1)) = 0A + 0A·x1

POL(plus(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(0) = 2A

POL(times(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(square(x1)) = 1A + 5A·x1

POL(active(x1)) = 0A + 0A·x1

POL(rnil) = 1A

POL(pi(x1)) = 2A + 3A·x1

The following usable rules [FROCOS05] were oriented:

active(2ndsneg(0, Z)) → mark(rnil)
square(active(X)) → square(X)
square(mark(X)) → square(X)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(square(X)) → mark(times(X, X))
mark(s(X)) → active(s(mark(X)))
mark(square(X)) → active(square(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(from(X)) → active(from(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
active(times(0, Y)) → mark(0)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
mark(rnil) → active(rnil)
mark(0) → active(0)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
from(active(X)) → from(X)
from(mark(X)) → from(X)

(83) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(2ndspos(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
ACTIVE(2ndsneg(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
MARK(2ndspos(X1, X2)) → MARK(X2)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(posrecip(X)) → MARK(X)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(2ndsneg(X1, X2)) → MARK(X2)
MARK(negrecip(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
MARK(square(X)) → ACTIVE(square(mark(X)))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(84) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(square(X)) → ACTIVE(square(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(2ndsneg(x1, x2)) = 1   
POL(2ndspos(x1, x2)) = 1   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = 1   
POL(active(x1)) = 0   
POL(cons(x1, x2)) = 0   
POL(from(x1)) = 1   
POL(mark(x1)) = 0   
POL(negrecip(x1)) = 0   
POL(pi(x1)) = 0   
POL(plus(x1, x2)) = 1   
POL(posrecip(x1)) = 0   
POL(rcons(x1, x2)) = 0   
POL(rnil) = 0   
POL(s(x1)) = 0   
POL(square(x1)) = 0   
POL(times(x1, x2)) = 1   

The following usable rules [FROCOS05] were oriented:

square(active(X)) → square(X)
square(mark(X)) → square(X)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
from(active(X)) → from(X)
from(mark(X)) → from(X)

(85) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(2ndspos(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
ACTIVE(2ndsneg(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
MARK(2ndspos(X1, X2)) → MARK(X2)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(posrecip(X)) → MARK(X)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(2ndsneg(X1, X2)) → MARK(X2)
MARK(negrecip(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(86) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(posrecip(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(MARK(x1)) = 0A + 0A·x1

POL(from(x1)) = 1A + 1A·x1

POL(ACTIVE(x1)) = 0A + 0A·x1

POL(mark(x1)) = 0A + 0A·x1

POL(cons(x1, x2)) = 1A + 1A·x1 + 0A·x2

POL(s(x1)) = -I + 0A·x1

POL(2ndspos(x1, x2)) = 1A + 0A·x1 + 0A·x2

POL(rcons(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(posrecip(x1)) = 1A + 1A·x1

POL(2ndsneg(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(negrecip(x1)) = -I + 0A·x1

POL(plus(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(0) = 0A

POL(times(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(active(x1)) = 0A + 0A·x1

POL(rnil) = 0A

POL(square(x1)) = -I + 0A·x1

POL(pi(x1)) = 1A + 1A·x1

The following usable rules [FROCOS05] were oriented:

active(2ndsneg(0, Z)) → mark(rnil)
square(active(X)) → square(X)
square(mark(X)) → square(X)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(square(X)) → mark(times(X, X))
mark(s(X)) → active(s(mark(X)))
mark(square(X)) → active(square(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(from(X)) → active(from(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
active(times(0, Y)) → mark(0)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
mark(rnil) → active(rnil)
mark(0) → active(0)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
from(active(X)) → from(X)
from(mark(X)) → from(X)

(87) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(2ndspos(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
ACTIVE(2ndsneg(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
MARK(2ndspos(X1, X2)) → MARK(X2)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(2ndsneg(X1, X2)) → MARK(X2)
MARK(negrecip(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(88) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(times(X1, X2)) → MARK(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(MARK(x1)) = 0A + 0A·x1

POL(from(x1)) = 0A + 0A·x1

POL(ACTIVE(x1)) = 0A + 0A·x1

POL(mark(x1)) = 0A + 0A·x1

POL(cons(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(s(x1)) = 0A + 0A·x1

POL(2ndspos(x1, x2)) = -I + -I·x1 + 0A·x2

POL(rcons(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(posrecip(x1)) = 0A + 0A·x1

POL(2ndsneg(x1, x2)) = 0A + -I·x1 + 0A·x2

POL(negrecip(x1)) = -I + 0A·x1

POL(plus(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(0) = 0A

POL(times(x1, x2)) = 5A + 0A·x1 + 1A·x2

POL(active(x1)) = 0A + 0A·x1

POL(rnil) = 0A

POL(square(x1)) = 5A + 1A·x1

POL(pi(x1)) = -I + 0A·x1

The following usable rules [FROCOS05] were oriented:

active(2ndsneg(0, Z)) → mark(rnil)
square(active(X)) → square(X)
square(mark(X)) → square(X)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(square(X)) → mark(times(X, X))
mark(s(X)) → active(s(mark(X)))
mark(square(X)) → active(square(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(from(X)) → active(from(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
active(times(0, Y)) → mark(0)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
mark(rnil) → active(rnil)
mark(0) → active(0)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
from(active(X)) → from(X)
from(mark(X)) → from(X)

(89) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(2ndspos(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
ACTIVE(2ndsneg(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
MARK(2ndspos(X1, X2)) → MARK(X2)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(2ndsneg(X1, X2)) → MARK(X2)
MARK(negrecip(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(times(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(90) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(2ndspos(X1, X2)) → MARK(X2)
MARK(2ndsneg(X1, X2)) → MARK(X2)
MARK(negrecip(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(MARK(x1)) = 0A + 0A·x1

POL(from(x1)) = -I + 0A·x1

POL(ACTIVE(x1)) = 0A + 0A·x1

POL(mark(x1)) = 0A + 0A·x1

POL(cons(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(s(x1)) = 0A + 0A·x1

POL(2ndspos(x1, x2)) = 1A + -I·x1 + 1A·x2

POL(rcons(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(posrecip(x1)) = 0A + -I·x1

POL(2ndsneg(x1, x2)) = 1A + -I·x1 + 1A·x2

POL(negrecip(x1)) = 1A + 1A·x1

POL(plus(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(0) = 0A

POL(times(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(active(x1)) = 0A + 0A·x1

POL(rnil) = 1A

POL(square(x1)) = -I + 0A·x1

POL(pi(x1)) = 1A + 0A·x1

The following usable rules [FROCOS05] were oriented:

active(2ndsneg(0, Z)) → mark(rnil)
square(active(X)) → square(X)
square(mark(X)) → square(X)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(square(X)) → mark(times(X, X))
mark(s(X)) → active(s(mark(X)))
mark(square(X)) → active(square(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(from(X)) → active(from(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
active(times(0, Y)) → mark(0)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
mark(rnil) → active(rnil)
mark(0) → active(0)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
from(active(X)) → from(X)
from(mark(X)) → from(X)

(91) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(2ndspos(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
ACTIVE(2ndsneg(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(times(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(92) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(plus(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(MARK(x1)) = -I + 0A·x1

POL(from(x1)) = 0A + -I·x1

POL(ACTIVE(x1)) = 0A + 0A·x1

POL(mark(x1)) = 2A + 0A·x1

POL(cons(x1, x2)) = -I + -I·x1 + 0A·x2

POL(s(x1)) = 0A + 0A·x1

POL(2ndspos(x1, x2)) = 0A + -I·x1 + -I·x2

POL(rcons(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(posrecip(x1)) = 0A + -I·x1

POL(2ndsneg(x1, x2)) = 0A + -I·x1 + -I·x2

POL(negrecip(x1)) = 0A + -I·x1

POL(plus(x1, x2)) = 3A + 1A·x1 + 0A·x2

POL(0) = 0A

POL(times(x1, x2)) = 3A + 0A·x1 + 1A·x2

POL(active(x1)) = 2A + 0A·x1

POL(rnil) = 0A

POL(square(x1)) = 3A + 1A·x1

POL(pi(x1)) = -I + 0A·x1

The following usable rules [FROCOS05] were oriented:

active(2ndsneg(0, Z)) → mark(rnil)
square(active(X)) → square(X)
square(mark(X)) → square(X)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(square(X)) → mark(times(X, X))
mark(s(X)) → active(s(mark(X)))
mark(square(X)) → active(square(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(from(X)) → active(from(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
active(times(0, Y)) → mark(0)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
mark(rnil) → active(rnil)
mark(0) → active(0)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
from(active(X)) → from(X)
from(mark(X)) → from(X)

(93) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(2ndspos(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
ACTIVE(2ndsneg(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(times(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(94) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(2ndsneg(x1, x2)) = 0   
POL(2ndspos(x1, x2)) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 0   
POL(from(x1)) = 1   
POL(mark(x1)) = x1   
POL(negrecip(x1)) = 0   
POL(pi(x1)) = x1   
POL(plus(x1, x2)) = x2   
POL(posrecip(x1)) = 0   
POL(rcons(x1, x2)) = x1 + x2   
POL(rnil) = 0   
POL(s(x1)) = x1   
POL(square(x1)) = x1   
POL(times(x1, x2)) = x1   

The following usable rules [FROCOS05] were oriented:

active(2ndsneg(0, Z)) → mark(rnil)
square(active(X)) → square(X)
square(mark(X)) → square(X)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(square(X)) → mark(times(X, X))
mark(s(X)) → active(s(mark(X)))
mark(square(X)) → active(square(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(from(X)) → active(from(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
active(times(0, Y)) → mark(0)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
mark(rnil) → active(rnil)
mark(0) → active(0)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
from(active(X)) → from(X)
from(mark(X)) → from(X)

(95) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(2ndspos(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
ACTIVE(2ndsneg(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(times(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(96) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(from(X)) → ACTIVE(from(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(2ndsneg(x1, x2)) = 1   
POL(2ndspos(x1, x2)) = 1   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = 1   
POL(active(x1)) = 0   
POL(cons(x1, x2)) = 0   
POL(from(x1)) = 0   
POL(mark(x1)) = 0   
POL(negrecip(x1)) = 0   
POL(pi(x1)) = 0   
POL(plus(x1, x2)) = 1   
POL(posrecip(x1)) = 0   
POL(rcons(x1, x2)) = 0   
POL(rnil) = 0   
POL(s(x1)) = 0   
POL(square(x1)) = 0   
POL(times(x1, x2)) = 1   

The following usable rules [FROCOS05] were oriented:

times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
from(active(X)) → from(X)
from(mark(X)) → from(X)

(97) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(2ndspos(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
ACTIVE(2ndsneg(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(times(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(98) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(times(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(2ndsneg(x1, x2)) = 0   
POL(2ndspos(x1, x2)) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 0   
POL(from(x1)) = x1   
POL(mark(x1)) = x1   
POL(negrecip(x1)) = 0   
POL(pi(x1)) = 0   
POL(plus(x1, x2)) = x2   
POL(posrecip(x1)) = 0   
POL(rcons(x1, x2)) = x1 + x2   
POL(rnil) = 0   
POL(s(x1)) = x1   
POL(square(x1)) = 1 + x1   
POL(times(x1, x2)) = 1 + x1   

The following usable rules [FROCOS05] were oriented:

active(2ndsneg(0, Z)) → mark(rnil)
square(active(X)) → square(X)
square(mark(X)) → square(X)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(square(X)) → mark(times(X, X))
mark(s(X)) → active(s(mark(X)))
mark(square(X)) → active(square(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(from(X)) → active(from(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
active(times(0, Y)) → mark(0)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
mark(rnil) → active(rnil)
mark(0) → active(0)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
from(active(X)) → from(X)
from(mark(X)) → from(X)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)

(99) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(2ndspos(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
ACTIVE(2ndsneg(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(100) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(rcons(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(ACTIVE(x1)) = -I + 0A·x1

POL(2ndspos(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(s(x1)) = 0A + 0A·x1

POL(cons(x1, x2)) = 0A + 1A·x1 + 0A·x2

POL(MARK(x1)) = -I + 0A·x1

POL(rcons(x1, x2)) = -I + 1A·x1 + 0A·x2

POL(posrecip(x1)) = -I + 0A·x1

POL(2ndsneg(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(negrecip(x1)) = -I + 0A·x1

POL(mark(x1)) = -I + 0A·x1

POL(plus(x1, x2)) = 0A + -I·x1 + 0A·x2

POL(0) = 0A

POL(times(x1, x2)) = 0A + -I·x1 + -I·x2

POL(active(x1)) = -I + 0A·x1

POL(rnil) = 0A

POL(square(x1)) = 0A + -I·x1

POL(pi(x1)) = 1A + 0A·x1

POL(from(x1)) = 1A + 1A·x1

The following usable rules [FROCOS05] were oriented:

active(2ndsneg(0, Z)) → mark(rnil)
square(active(X)) → square(X)
square(mark(X)) → square(X)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(square(X)) → mark(times(X, X))
mark(s(X)) → active(s(mark(X)))
mark(square(X)) → active(square(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(from(X)) → active(from(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
active(times(0, Y)) → mark(0)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
mark(rnil) → active(rnil)
mark(0) → active(0)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
from(active(X)) → from(X)
from(mark(X)) → from(X)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)

(101) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(2ndspos(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
ACTIVE(2ndsneg(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(102) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(2ndspos(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(ACTIVE(x1)) = 0A + 0A·x1

POL(2ndspos(x1, x2)) = 2A + -I·x1 + 0A·x2

POL(s(x1)) = 1A + 0A·x1

POL(cons(x1, x2)) = 1A + -I·x1 + 1A·x2

POL(MARK(x1)) = 1A + 0A·x1

POL(rcons(x1, x2)) = -I + -I·x1 + 0A·x2

POL(posrecip(x1)) = 0A + 0A·x1

POL(2ndsneg(x1, x2)) = -I + -I·x1 + 0A·x2

POL(negrecip(x1)) = 0A + 0A·x1

POL(mark(x1)) = 1A + 0A·x1

POL(plus(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(0) = 1A

POL(times(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(active(x1)) = 1A + 0A·x1

POL(rnil) = 0A

POL(square(x1)) = 3A + 2A·x1

POL(pi(x1)) = 2A + -I·x1

POL(from(x1)) = 0A + -I·x1

The following usable rules [FROCOS05] were oriented:

active(2ndsneg(0, Z)) → mark(rnil)
square(active(X)) → square(X)
square(mark(X)) → square(X)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(square(X)) → mark(times(X, X))
mark(s(X)) → active(s(mark(X)))
mark(square(X)) → active(square(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(from(X)) → active(from(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
active(times(0, Y)) → mark(0)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
mark(rnil) → active(rnil)
mark(0) → active(0)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
from(active(X)) → from(X)
from(mark(X)) → from(X)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)

(103) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(2ndsneg(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(104) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(2ndsneg(x1, x2)) = 1   
POL(2ndspos(x1, x2)) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = 1   
POL(active(x1)) = 0   
POL(cons(x1, x2)) = 0   
POL(from(x1)) = 0   
POL(mark(x1)) = 0   
POL(negrecip(x1)) = 0   
POL(pi(x1)) = 0   
POL(plus(x1, x2)) = 1   
POL(posrecip(x1)) = 0   
POL(rcons(x1, x2)) = 0   
POL(rnil) = 0   
POL(s(x1)) = 0   
POL(square(x1)) = 0   
POL(times(x1, x2)) = 1   

The following usable rules [FROCOS05] were oriented:

times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)

(105) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(2ndsneg(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(s(X)) → MARK(X)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(106) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(2ndsneg(s(N), cons(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(ACTIVE(x1)) = 0A + 0A·x1

POL(2ndsneg(x1, x2)) = -I + -I·x1 + 0A·x2

POL(s(x1)) = 1A + 0A·x1

POL(cons(x1, x2)) = 1A + -I·x1 + 1A·x2

POL(MARK(x1)) = 1A + 0A·x1

POL(rcons(x1, x2)) = -I + -I·x1 + 0A·x2

POL(negrecip(x1)) = 0A + -I·x1

POL(2ndspos(x1, x2)) = -I + -I·x1 + 0A·x2

POL(plus(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(0) = 1A

POL(mark(x1)) = 1A + 0A·x1

POL(times(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(active(x1)) = 1A + 0A·x1

POL(rnil) = 0A

POL(square(x1)) = -I + 0A·x1

POL(pi(x1)) = -I + 0A·x1

POL(from(x1)) = 0A + -I·x1

POL(posrecip(x1)) = -I + 0A·x1

The following usable rules [FROCOS05] were oriented:

active(2ndsneg(0, Z)) → mark(rnil)
square(active(X)) → square(X)
square(mark(X)) → square(X)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(square(X)) → mark(times(X, X))
mark(s(X)) → active(s(mark(X)))
mark(square(X)) → active(square(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(from(X)) → active(from(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
active(times(0, Y)) → mark(0)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
mark(rnil) → active(rnil)
mark(0) → active(0)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
from(active(X)) → from(X)
from(mark(X)) → from(X)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)

(107) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(s(X)) → MARK(X)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(108) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(2ndsneg(x1, x2)) = 0   
POL(2ndspos(x1, x2)) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = 1   
POL(active(x1)) = 0   
POL(cons(x1, x2)) = 0   
POL(from(x1)) = 0   
POL(mark(x1)) = 0   
POL(negrecip(x1)) = 0   
POL(pi(x1)) = 0   
POL(plus(x1, x2)) = 1   
POL(posrecip(x1)) = 0   
POL(rcons(x1, x2)) = 0   
POL(rnil) = 0   
POL(s(x1)) = 0   
POL(square(x1)) = 0   
POL(times(x1, x2)) = 1   

The following usable rules [FROCOS05] were oriented:

times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)

(109) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(s(X)) → MARK(X)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(110) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(rcons(X1, X2)) → MARK(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(MARK(x1)) = 1A + 0A·x1

POL(s(x1)) = 0A + 0A·x1

POL(ACTIVE(x1)) = 1A + 0A·x1

POL(plus(x1, x2)) = -I + -I·x1 + 0A·x2

POL(0) = 0A

POL(rcons(x1, x2)) = 2A + -I·x1 + 1A·x2

POL(times(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(mark(x1)) = 1A + 0A·x1

POL(active(x1)) = 1A + 0A·x1

POL(2ndsneg(x1, x2)) = -I + -I·x1 + 0A·x2

POL(rnil) = 0A

POL(square(x1)) = -I + 0A·x1

POL(2ndspos(x1, x2)) = 0A + -I·x1 + 0A·x2

POL(cons(x1, x2)) = 1A + -I·x1 + 1A·x2

POL(negrecip(x1)) = -I + 0A·x1

POL(pi(x1)) = 5A + -I·x1

POL(from(x1)) = 0A + -I·x1

POL(posrecip(x1)) = 0A + -I·x1

The following usable rules [FROCOS05] were oriented:

active(2ndsneg(0, Z)) → mark(rnil)
square(active(X)) → square(X)
square(mark(X)) → square(X)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(square(X)) → mark(times(X, X))
mark(s(X)) → active(s(mark(X)))
mark(square(X)) → active(square(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(from(X)) → active(from(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
active(times(0, Y)) → mark(0)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
mark(rnil) → active(rnil)
mark(0) → active(0)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
from(active(X)) → from(X)
from(mark(X)) → from(X)

(111) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(s(X)) → MARK(X)
ACTIVE(plus(0, Y)) → MARK(Y)
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(112) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(s(X)) → MARK(X)
ACTIVE(plus(0, Y)) → MARK(Y)
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
s(x1)  =  s(x1)
ACTIVE(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
0  =  0
times(x1, x2)  =  times(x1, x2)
mark(x1)  =  x1
active(x1)  =  x1
2ndsneg(x1, x2)  =  x2
rnil  =  rnil
square(x1)  =  square(x1)
2ndspos(x1, x2)  =  x2
cons(x1, x2)  =  x2
rcons(x1, x2)  =  x2
negrecip(x1)  =  negrecip
pi(x1)  =  pi(x1)
from(x1)  =  from
posrecip(x1)  =  posrecip

Recursive path order with status [RPO].
Quasi-Precedence:
0 > MARK1 > rnil
square1 > times2 > plus2 > MARK1 > rnil
square1 > times2 > plus2 > s1 > rnil
negrecip > rnil
pi1 > from > s1 > rnil
posrecip > rnil

Status:
negrecip: multiset
from: []
plus2: [2,1]
MARK1: [1]
rnil: multiset
times2: [1,2]
s1: [1]
square1: multiset
pi1: multiset
posrecip: multiset
0: multiset


The following usable rules [FROCOS05] were oriented:

active(2ndsneg(0, Z)) → mark(rnil)
square(active(X)) → square(X)
square(mark(X)) → square(X)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(square(X)) → mark(times(X, X))
mark(s(X)) → active(s(mark(X)))
mark(square(X)) → active(square(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(from(X)) → active(from(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
active(times(0, Y)) → mark(0)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
mark(rnil) → active(rnil)
mark(0) → active(0)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
from(active(X)) → from(X)
from(mark(X)) → from(X)

(113) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(114) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(115) TRUE