(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(X) → CONS(X, n__from(n__s(X)))
2NDSPOS(s(N), cons(X, n__cons(Y, Z))) → ACTIVATE(Y)
2NDSPOS(s(N), cons(X, n__cons(Y, Z))) → 2NDSNEG(N, activate(Z))
2NDSPOS(s(N), cons(X, n__cons(Y, Z))) → ACTIVATE(Z)
2NDSNEG(s(N), cons(X, n__cons(Y, Z))) → ACTIVATE(Y)
2NDSNEG(s(N), cons(X, n__cons(Y, Z))) → 2NDSPOS(N, activate(Z))
2NDSNEG(s(N), cons(X, n__cons(Y, Z))) → ACTIVATE(Z)
PI(X) → 2NDSPOS(X, from(0))
PI(X) → FROM(0)
PLUS(s(X), Y) → S(plus(X, Y))
PLUS(s(X), Y) → PLUS(X, Y)
TIMES(s(X), Y) → PLUS(Y, times(X, Y))
TIMES(s(X), Y) → TIMES(X, Y)
SQUARE(X) → TIMES(X, X)
ACTIVATE(n__from(X)) → FROM(activate(X))
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__cons(X1, X2)) → CONS(activate(X1), X2)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 13 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(s(X), Y) → PLUS(X, Y)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(s(X), Y) → PLUS(X, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x1)
s(x1)  =  s(x1)
from(x1)  =  x1
cons(x1, x2)  =  x1
n__from(x1)  =  x1
n__s(x1)  =  n__s(x1)
2ndspos(x1, x2)  =  2ndspos
0  =  0
rnil  =  rnil
n__cons(x1, x2)  =  x1
rcons(x1, x2)  =  rcons
posrecip(x1)  =  posrecip(x1)
activate(x1)  =  x1
2ndsneg(x1, x2)  =  2ndsneg(x2)
negrecip(x1)  =  negrecip(x1)
pi(x1)  =  pi(x1)
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  square(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
pi1 > 2ndspos > [rcons, 2ndsneg1, negrecip1] > rnil > PLUS1
pi1 > 2ndspos > posrecip1 > PLUS1
pi1 > 0 > PLUS1
square1 > times2 > plus2 > [s1, ns1] > PLUS1

Status:
PLUS1: multiset
s1: multiset
ns1: multiset
2ndspos: multiset
0: multiset
rnil: multiset
rcons: multiset
posrecip1: multiset
2ndsneg1: multiset
negrecip1: multiset
pi1: [1]
plus2: [1,2]
times2: [2,1]
square1: multiset


The following usable rules [FROCOS05] were oriented:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TIMES(s(X), Y) → TIMES(X, Y)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TIMES(s(X), Y) → TIMES(X, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TIMES(x1, x2)  =  TIMES(x1)
s(x1)  =  s(x1)
from(x1)  =  x1
cons(x1, x2)  =  x1
n__from(x1)  =  x1
n__s(x1)  =  n__s(x1)
2ndspos(x1, x2)  =  2ndspos(x1, x2)
0  =  0
rnil  =  rnil
n__cons(x1, x2)  =  x1
rcons(x1, x2)  =  rcons
posrecip(x1)  =  posrecip(x1)
activate(x1)  =  activate(x1)
2ndsneg(x1, x2)  =  2ndsneg(x2)
negrecip(x1)  =  x1
pi(x1)  =  pi(x1)
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  square(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
activate1 > s1 > ns1
activate1 > s1 > posrecip1
pi1 > 2ndspos2 > [rcons, 2ndsneg1] > [0, rnil]
pi1 > 2ndspos2 > posrecip1
square1 > times2 > [0, rnil]
square1 > times2 > plus2 > s1 > ns1
square1 > times2 > plus2 > s1 > posrecip1

Status:
TIMES1: multiset
s1: [1]
ns1: multiset
2ndspos2: multiset
0: multiset
rnil: multiset
rcons: multiset
posrecip1: multiset
activate1: [1]
2ndsneg1: multiset
pi1: [1]
plus2: [1,2]
times2: [2,1]
square1: [1]


The following usable rules [FROCOS05] were oriented:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__from(X)) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVATE(x1)  =  ACTIVATE(x1)
n__s(x1)  =  x1
n__from(x1)  =  n__from(x1)
n__cons(x1, x2)  =  x1
from(x1)  =  from(x1)
cons(x1, x2)  =  x1
2ndspos(x1, x2)  =  x1
0  =  0
rnil  =  rnil
s(x1)  =  x1
rcons(x1, x2)  =  rcons
posrecip(x1)  =  posrecip
activate(x1)  =  x1
2ndsneg(x1, x2)  =  2ndsneg
negrecip(x1)  =  negrecip(x1)
pi(x1)  =  pi(x1)
plus(x1, x2)  =  x2
times(x1, x2)  =  times(x2)
square(x1)  =  square(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[ACTIVATE1, nfrom1, from1] > rcons
posrecip > rcons
[2ndsneg, negrecip1] > [0, rnil] > rcons
pi1 > [0, rnil] > rcons
[times1, square1] > [0, rnil] > rcons

Status:
ACTIVATE1: multiset
nfrom1: [1]
from1: [1]
0: multiset
rnil: multiset
rcons: []
posrecip: multiset
2ndsneg: multiset
negrecip1: multiset
pi1: [1]
times1: [1]
square1: [1]


The following usable rules [FROCOS05] were oriented:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVATE(x1)  =  x1
n__s(x1)  =  x1
n__cons(x1, x2)  =  n__cons(x1)
from(x1)  =  from(x1)
cons(x1, x2)  =  cons(x1)
n__from(x1)  =  n__from(x1)
2ndspos(x1, x2)  =  2ndspos(x1)
0  =  0
rnil  =  rnil
s(x1)  =  x1
rcons(x1, x2)  =  rcons(x1)
posrecip(x1)  =  posrecip
activate(x1)  =  activate(x1)
2ndsneg(x1, x2)  =  2ndsneg(x1)
negrecip(x1)  =  negrecip
pi(x1)  =  pi(x1)
plus(x1, x2)  =  x2
times(x1, x2)  =  x1
square(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
activate1 > from1 > [cons1, 2ndspos1, rnil, rcons1, 2ndsneg1] > ncons1 > [posrecip, negrecip]
activate1 > from1 > nfrom1 > [posrecip, negrecip]
pi1 > from1 > [cons1, 2ndspos1, rnil, rcons1, 2ndsneg1] > ncons1 > [posrecip, negrecip]
pi1 > from1 > nfrom1 > [posrecip, negrecip]
pi1 > 0 > [posrecip, negrecip]

Status:
ncons1: [1]
from1: [1]
cons1: multiset
nfrom1: [1]
2ndspos1: [1]
0: multiset
rnil: multiset
rcons1: [1]
posrecip: multiset
activate1: multiset
2ndsneg1: [1]
negrecip: multiset
pi1: multiset


The following usable rules [FROCOS05] were oriented:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__s(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__s(X)) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVATE(x1)  =  ACTIVATE(x1)
n__s(x1)  =  n__s(x1)
from(x1)  =  from
cons(x1, x2)  =  cons(x2)
n__from(x1)  =  n__from
2ndspos(x1, x2)  =  2ndspos(x1, x2)
0  =  0
rnil  =  rnil
s(x1)  =  s(x1)
n__cons(x1, x2)  =  n__cons(x2)
rcons(x1, x2)  =  rcons
posrecip(x1)  =  x1
activate(x1)  =  activate(x1)
2ndsneg(x1, x2)  =  2ndsneg(x2)
negrecip(x1)  =  negrecip
pi(x1)  =  pi(x1)
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  square(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
ACTIVATE1 > rnil
2ndsneg1 > activate1 > [ns1, s1, rcons] > 2ndspos2 > rnil
2ndsneg1 > activate1 > from > [cons1, ncons1] > 2ndspos2 > rnil
2ndsneg1 > activate1 > from > nfrom > rnil
2ndsneg1 > negrecip > rnil
pi1 > from > [cons1, ncons1] > 2ndspos2 > rnil
pi1 > from > nfrom > rnil
pi1 > 0 > rnil
square1 > times2 > 0 > rnil
square1 > times2 > plus2 > [ns1, s1, rcons] > 2ndspos2 > rnil

Status:
ACTIVATE1: multiset
ns1: multiset
from: multiset
cons1: [1]
nfrom: multiset
2ndspos2: [1,2]
0: multiset
rnil: multiset
s1: multiset
ncons1: [1]
rcons: multiset
activate1: multiset
2ndsneg1: [1]
negrecip: multiset
pi1: [1]
plus2: multiset
times2: [2,1]
square1: multiset


The following usable rules [FROCOS05] were oriented:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

(21) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(23) TRUE

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

2NDSPOS(s(N), cons(X, n__cons(Y, Z))) → 2NDSNEG(N, activate(Z))
2NDSNEG(s(N), cons(X, n__cons(Y, Z))) → 2NDSPOS(N, activate(Z))

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


2NDSPOS(s(N), cons(X, n__cons(Y, Z))) → 2NDSNEG(N, activate(Z))
2NDSNEG(s(N), cons(X, n__cons(Y, Z))) → 2NDSPOS(N, activate(Z))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
2NDSPOS(x1, x2)  =  2NDSPOS(x1, x2)
s(x1)  =  s(x1)
cons(x1, x2)  =  cons(x2)
n__cons(x1, x2)  =  x2
2NDSNEG(x1, x2)  =  2NDSNEG(x1, x2)
activate(x1)  =  activate(x1)
from(x1)  =  from(x1)
n__from(x1)  =  n__from(x1)
n__s(x1)  =  n__s(x1)
2ndspos(x1, x2)  =  2ndspos(x1)
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  rcons(x1)
posrecip(x1)  =  posrecip
2ndsneg(x1, x2)  =  2ndsneg
negrecip(x1)  =  negrecip
pi(x1)  =  pi(x1)
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  square(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[2NDSPOS2, 2NDSNEG2] > activate1 > s1 > [ns1, 0]
[2NDSPOS2, 2NDSNEG2] > activate1 > from1 > [cons1, posrecip] > [ns1, 0]
[2NDSPOS2, 2NDSNEG2] > activate1 > from1 > nfrom1 > [ns1, 0]
pi1 > [2ndspos1, rnil, 2ndsneg] > activate1 > s1 > [ns1, 0]
pi1 > [2ndspos1, rnil, 2ndsneg] > activate1 > from1 > [cons1, posrecip] > [ns1, 0]
pi1 > [2ndspos1, rnil, 2ndsneg] > activate1 > from1 > nfrom1 > [ns1, 0]
pi1 > [2ndspos1, rnil, 2ndsneg] > rcons1 > [ns1, 0]
pi1 > [2ndspos1, rnil, 2ndsneg] > negrecip > [ns1, 0]
square1 > times2 > plus2 > s1 > [ns1, 0]

Status:
2NDSPOS2: [1,2]
s1: multiset
cons1: multiset
2NDSNEG2: [1,2]
activate1: [1]
from1: multiset
nfrom1: multiset
ns1: [1]
2ndspos1: [1]
0: multiset
rnil: multiset
rcons1: [1]
posrecip: []
2ndsneg: []
negrecip: multiset
pi1: multiset
plus2: [2,1]
times2: [2,1]
square1: multiset


The following usable rules [FROCOS05] were oriented:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

(26) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(28) TRUE