(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(X) → CONS(X, n__from(n__s(X)))
2NDSPOS(s(N), cons(X, n__cons(Y, Z))) → ACTIVATE(Y)
2NDSPOS(s(N), cons(X, n__cons(Y, Z))) → 2NDSNEG(N, activate(Z))
2NDSPOS(s(N), cons(X, n__cons(Y, Z))) → ACTIVATE(Z)
2NDSNEG(s(N), cons(X, n__cons(Y, Z))) → ACTIVATE(Y)
2NDSNEG(s(N), cons(X, n__cons(Y, Z))) → 2NDSPOS(N, activate(Z))
2NDSNEG(s(N), cons(X, n__cons(Y, Z))) → ACTIVATE(Z)
PI(X) → 2NDSPOS(X, from(0))
PI(X) → FROM(0)
PLUS(s(X), Y) → S(plus(X, Y))
PLUS(s(X), Y) → PLUS(X, Y)
TIMES(s(X), Y) → PLUS(Y, times(X, Y))
TIMES(s(X), Y) → TIMES(X, Y)
SQUARE(X) → TIMES(X, X)
ACTIVATE(n__from(X)) → FROM(activate(X))
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__cons(X1, X2)) → CONS(activate(X1), X2)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 13 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(s(X), Y) → PLUS(X, Y)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(s(X), Y) → PLUS(X, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  x1
s(x1)  =  s(x1)
from(x1)  =  from(x1)
cons(x1, x2)  =  cons(x1, x2)
n__from(x1)  =  n__from(x1)
n__s(x1)  =  n__s(x1)
2ndspos(x1, x2)  =  x1
0  =  0
rnil  =  rnil
n__cons(x1, x2)  =  n__cons(x1, x2)
rcons(x1, x2)  =  rcons(x1)
posrecip(x1)  =  posrecip
activate(x1)  =  activate(x1)
2ndsneg(x1, x2)  =  x1
negrecip(x1)  =  negrecip
pi(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  square(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
0 > [s1, ns1, rnil, rcons1, posrecip, negrecip]
activate1 > from1 > [cons2, ncons2] > [s1, ns1, rnil, rcons1, posrecip, negrecip]
activate1 > from1 > nfrom1 > [s1, ns1, rnil, rcons1, posrecip, negrecip]
square1 > times2 > plus2 > [s1, ns1, rnil, rcons1, posrecip, negrecip]

Status:
plus2: [2,1]
from1: [1]
rnil: []
ncons2: [2,1]
activate1: [1]
ns1: [1]
square1: [1]
0: []
negrecip: []
cons2: [2,1]
nfrom1: [1]
times2: [2,1]
s1: [1]
posrecip: []
rcons1: [1]


The following usable rules [FROCOS05] were oriented:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TIMES(s(X), Y) → TIMES(X, Y)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TIMES(s(X), Y) → TIMES(X, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TIMES(x1, x2)  =  x1
s(x1)  =  s(x1)
from(x1)  =  x1
cons(x1, x2)  =  x1
n__from(x1)  =  x1
n__s(x1)  =  n__s(x1)
2ndspos(x1, x2)  =  2ndspos(x1)
0  =  0
rnil  =  rnil
n__cons(x1, x2)  =  x1
rcons(x1, x2)  =  rcons(x1)
posrecip(x1)  =  posrecip
activate(x1)  =  activate(x1)
2ndsneg(x1, x2)  =  2ndsneg
negrecip(x1)  =  negrecip
pi(x1)  =  pi(x1)
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  square(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
activate1 > [s1, ns1, rnil, rcons1]
2ndsneg > [2ndspos1, posrecip] > [s1, ns1, rnil, rcons1]
2ndsneg > negrecip > [s1, ns1, rnil, rcons1]
square1 > times2 > [0, pi1] > [2ndspos1, posrecip] > [s1, ns1, rnil, rcons1]
square1 > times2 > plus2 > [s1, ns1, rnil, rcons1]

Status:
plus2: [2,1]
rnil: []
activate1: [1]
pi1: [1]
ns1: [1]
square1: [1]
2ndsneg: []
0: []
negrecip: []
times2: [2,1]
s1: [1]
posrecip: []
rcons1: [1]
2ndspos1: [1]


The following usable rules [FROCOS05] were oriented:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__s(X)) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVATE(x1)  =  x1
n__s(x1)  =  n__s(x1)
n__from(x1)  =  x1
n__cons(x1, x2)  =  x1
from(x1)  =  x1
cons(x1, x2)  =  x1
2ndspos(x1, x2)  =  2ndspos
0  =  0
rnil  =  rnil
s(x1)  =  s(x1)
rcons(x1, x2)  =  x2
posrecip(x1)  =  posrecip
activate(x1)  =  activate(x1)
2ndsneg(x1, x2)  =  2ndsneg
negrecip(x1)  =  negrecip(x1)
pi(x1)  =  pi
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  square(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
pi > [2ndspos, rnil, 2ndsneg] > activate1 > [ns1, s1]
pi > 0
square1 > times2 > 0
square1 > times2 > plus2 > [ns1, s1]

Status:
plus2: [2,1]
rnil: []
negrecip1: [1]
activate1: [1]
square1: [1]
ns1: [1]
2ndsneg: []
0: []
2ndspos: []
times2: [2,1]
pi: []
s1: [1]
posrecip: []


The following usable rules [FROCOS05] were oriented:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__from(X)) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVATE(x1)  =  ACTIVATE(x1)
n__from(x1)  =  n__from(x1)
n__cons(x1, x2)  =  x1
from(x1)  =  from(x1)
cons(x1, x2)  =  x1
n__s(x1)  =  n__s(x1)
2ndspos(x1, x2)  =  2ndspos(x1, x2)
0  =  0
rnil  =  rnil
s(x1)  =  s(x1)
rcons(x1, x2)  =  x1
posrecip(x1)  =  posrecip
activate(x1)  =  activate(x1)
2ndsneg(x1, x2)  =  2ndsneg
negrecip(x1)  =  negrecip
pi(x1)  =  pi(x1)
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  square(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
ACTIVATE1 > nfrom1
pi1 > 2ndspos2 > posrecip > nfrom1
pi1 > 2ndspos2 > activate1 > [from1, ns1, s1] > 2ndsneg > rnil > nfrom1
pi1 > 2ndspos2 > activate1 > [from1, ns1, s1] > 2ndsneg > negrecip > nfrom1
pi1 > 0 > nfrom1
square1 > times2 > 0 > nfrom1
square1 > times2 > plus2 > [from1, ns1, s1] > 2ndsneg > rnil > nfrom1
square1 > times2 > plus2 > [from1, ns1, s1] > 2ndsneg > negrecip > nfrom1

Status:
from1: [1]
plus2: [2,1]
rnil: []
activate1: [1]
pi1: [1]
ns1: [1]
square1: [1]
2ndsneg: []
0: []
negrecip: []
2ndspos2: [2,1]
nfrom1: [1]
times2: [2,1]
s1: [1]
posrecip: []
ACTIVATE1: [1]


The following usable rules [FROCOS05] were oriented:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVATE(x1)  =  x1
n__cons(x1, x2)  =  n__cons(x1)
from(x1)  =  from(x1)
cons(x1, x2)  =  cons(x1)
n__from(x1)  =  n__from(x1)
n__s(x1)  =  x1
2ndspos(x1, x2)  =  2ndspos(x1)
0  =  0
rnil  =  rnil
s(x1)  =  x1
rcons(x1, x2)  =  rcons
posrecip(x1)  =  posrecip
activate(x1)  =  activate(x1)
2ndsneg(x1, x2)  =  2ndsneg(x2)
negrecip(x1)  =  negrecip
pi(x1)  =  pi(x1)
plus(x1, x2)  =  x2
times(x1, x2)  =  times(x2)
square(x1)  =  square(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[2ndspos1, rcons, 2ndsneg1, pi1] > 0 > rnil > [ncons1, cons1, nfrom1]
[2ndspos1, rcons, 2ndsneg1, pi1] > posrecip > [ncons1, cons1, nfrom1]
[2ndspos1, rcons, 2ndsneg1, pi1] > activate1 > from1 > [ncons1, cons1, nfrom1]
[2ndspos1, rcons, 2ndsneg1, pi1] > negrecip > [ncons1, cons1, nfrom1]
[times1, square1] > 0 > rnil > [ncons1, cons1, nfrom1]

Status:
from1: [1]
cons1: [1]
rnil: []
times1: [1]
activate1: [1]
pi1: [1]
square1: [1]
0: []
negrecip: []
nfrom1: [1]
rcons: []
ncons1: [1]
posrecip: []
2ndsneg1: [1]
2ndspos1: [1]


The following usable rules [FROCOS05] were oriented:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

(21) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(23) TRUE

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

2NDSPOS(s(N), cons(X, n__cons(Y, Z))) → 2NDSNEG(N, activate(Z))
2NDSNEG(s(N), cons(X, n__cons(Y, Z))) → 2NDSPOS(N, activate(Z))

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


2NDSNEG(s(N), cons(X, n__cons(Y, Z))) → 2NDSPOS(N, activate(Z))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
2NDSPOS(x1, x2)  =  x1
s(x1)  =  s(x1)
cons(x1, x2)  =  x1
n__cons(x1, x2)  =  x1
2NDSNEG(x1, x2)  =  2NDSNEG(x1)
activate(x1)  =  activate(x1)
from(x1)  =  x1
n__from(x1)  =  x1
n__s(x1)  =  n__s(x1)
2ndspos(x1, x2)  =  2ndspos
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  x2
posrecip(x1)  =  x1
2ndsneg(x1, x2)  =  2ndsneg
negrecip(x1)  =  negrecip(x1)
pi(x1)  =  pi
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  square(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
0 > rnil
pi > [2ndspos, 2ndsneg] > rnil
square1 > times2 > plus2 > [s1, 2NDSNEG1, activate1, ns1] > [2ndspos, 2ndsneg] > rnil
square1 > times2 > plus2 > [s1, 2NDSNEG1, activate1, ns1] > negrecip1

Status:
plus2: [2,1]
rnil: []
negrecip1: [1]
2NDSNEG1: [1]
activate1: [1]
square1: [1]
ns1: [1]
2ndsneg: []
0: []
2ndspos: []
times2: [2,1]
pi: []
s1: [1]


The following usable rules [FROCOS05] were oriented:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

2NDSPOS(s(N), cons(X, n__cons(Y, Z))) → 2NDSNEG(N, activate(Z))

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, n__cons(Y, Z))) → rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, n__cons(Y, Z))) → rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(28) TRUE