(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(from(X)) → CONS(X, from(s(X)))
ACTIVE(from(X)) → FROM(s(X))
ACTIVE(from(X)) → S(X)
ACTIVE(2ndspos(s(N), cons(X, cons(Y, Z)))) → RCONS(posrecip(Y), 2ndsneg(N, Z))
ACTIVE(2ndspos(s(N), cons(X, cons(Y, Z)))) → POSRECIP(Y)
ACTIVE(2ndspos(s(N), cons(X, cons(Y, Z)))) → 2NDSNEG(N, Z)
ACTIVE(2ndsneg(s(N), cons(X, cons(Y, Z)))) → RCONS(negrecip(Y), 2ndspos(N, Z))
ACTIVE(2ndsneg(s(N), cons(X, cons(Y, Z)))) → NEGRECIP(Y)
ACTIVE(2ndsneg(s(N), cons(X, cons(Y, Z)))) → 2NDSPOS(N, Z)
ACTIVE(pi(X)) → 2NDSPOS(X, from(0))
ACTIVE(pi(X)) → FROM(0)
ACTIVE(plus(s(X), Y)) → S(plus(X, Y))
ACTIVE(plus(s(X), Y)) → PLUS(X, Y)
ACTIVE(times(s(X), Y)) → PLUS(Y, times(X, Y))
ACTIVE(times(s(X), Y)) → TIMES(X, Y)
ACTIVE(square(X)) → TIMES(X, X)
ACTIVE(s(X)) → S(active(X))
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(posrecip(X)) → POSRECIP(active(X))
ACTIVE(posrecip(X)) → ACTIVE(X)
ACTIVE(negrecip(X)) → NEGRECIP(active(X))
ACTIVE(negrecip(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(rcons(X1, X2)) → RCONS(active(X1), X2)
ACTIVE(rcons(X1, X2)) → ACTIVE(X1)
ACTIVE(rcons(X1, X2)) → RCONS(X1, active(X2))
ACTIVE(rcons(X1, X2)) → ACTIVE(X2)
ACTIVE(from(X)) → FROM(active(X))
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(2ndspos(X1, X2)) → 2NDSPOS(active(X1), X2)
ACTIVE(2ndspos(X1, X2)) → ACTIVE(X1)
ACTIVE(2ndspos(X1, X2)) → 2NDSPOS(X1, active(X2))
ACTIVE(2ndspos(X1, X2)) → ACTIVE(X2)
ACTIVE(2ndsneg(X1, X2)) → 2NDSNEG(active(X1), X2)
ACTIVE(2ndsneg(X1, X2)) → ACTIVE(X1)
ACTIVE(2ndsneg(X1, X2)) → 2NDSNEG(X1, active(X2))
ACTIVE(2ndsneg(X1, X2)) → ACTIVE(X2)
ACTIVE(pi(X)) → PI(active(X))
ACTIVE(pi(X)) → ACTIVE(X)
ACTIVE(plus(X1, X2)) → PLUS(active(X1), X2)
ACTIVE(plus(X1, X2)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → PLUS(X1, active(X2))
ACTIVE(plus(X1, X2)) → ACTIVE(X2)
ACTIVE(times(X1, X2)) → TIMES(active(X1), X2)
ACTIVE(times(X1, X2)) → ACTIVE(X1)
ACTIVE(times(X1, X2)) → TIMES(X1, active(X2))
ACTIVE(times(X1, X2)) → ACTIVE(X2)
ACTIVE(square(X)) → SQUARE(active(X))
ACTIVE(square(X)) → ACTIVE(X)
S(mark(X)) → S(X)
POSRECIP(mark(X)) → POSRECIP(X)
NEGRECIP(mark(X)) → NEGRECIP(X)
CONS(mark(X1), X2) → CONS(X1, X2)
RCONS(mark(X1), X2) → RCONS(X1, X2)
RCONS(X1, mark(X2)) → RCONS(X1, X2)
FROM(mark(X)) → FROM(X)
2NDSPOS(mark(X1), X2) → 2NDSPOS(X1, X2)
2NDSPOS(X1, mark(X2)) → 2NDSPOS(X1, X2)
2NDSNEG(mark(X1), X2) → 2NDSNEG(X1, X2)
2NDSNEG(X1, mark(X2)) → 2NDSNEG(X1, X2)
PI(mark(X)) → PI(X)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(X1, mark(X2)) → PLUS(X1, X2)
TIMES(mark(X1), X2) → TIMES(X1, X2)
TIMES(X1, mark(X2)) → TIMES(X1, X2)
SQUARE(mark(X)) → SQUARE(X)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(posrecip(X)) → POSRECIP(proper(X))
PROPER(posrecip(X)) → PROPER(X)
PROPER(negrecip(X)) → NEGRECIP(proper(X))
PROPER(negrecip(X)) → PROPER(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(rcons(X1, X2)) → RCONS(proper(X1), proper(X2))
PROPER(rcons(X1, X2)) → PROPER(X1)
PROPER(rcons(X1, X2)) → PROPER(X2)
PROPER(from(X)) → FROM(proper(X))
PROPER(from(X)) → PROPER(X)
PROPER(2ndspos(X1, X2)) → 2NDSPOS(proper(X1), proper(X2))
PROPER(2ndspos(X1, X2)) → PROPER(X1)
PROPER(2ndspos(X1, X2)) → PROPER(X2)
PROPER(2ndsneg(X1, X2)) → 2NDSNEG(proper(X1), proper(X2))
PROPER(2ndsneg(X1, X2)) → PROPER(X1)
PROPER(2ndsneg(X1, X2)) → PROPER(X2)
PROPER(pi(X)) → PI(proper(X))
PROPER(pi(X)) → PROPER(X)
PROPER(plus(X1, X2)) → PLUS(proper(X1), proper(X2))
PROPER(plus(X1, X2)) → PROPER(X1)
PROPER(plus(X1, X2)) → PROPER(X2)
PROPER(times(X1, X2)) → TIMES(proper(X1), proper(X2))
PROPER(times(X1, X2)) → PROPER(X1)
PROPER(times(X1, X2)) → PROPER(X2)
PROPER(square(X)) → SQUARE(proper(X))
PROPER(square(X)) → PROPER(X)
S(ok(X)) → S(X)
POSRECIP(ok(X)) → POSRECIP(X)
NEGRECIP(ok(X)) → NEGRECIP(X)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
RCONS(ok(X1), ok(X2)) → RCONS(X1, X2)
FROM(ok(X)) → FROM(X)
2NDSPOS(ok(X1), ok(X2)) → 2NDSPOS(X1, X2)
2NDSNEG(ok(X1), ok(X2)) → 2NDSNEG(X1, X2)
PI(ok(X)) → PI(X)
PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)
TIMES(ok(X1), ok(X2)) → TIMES(X1, X2)
SQUARE(ok(X)) → SQUARE(X)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 15 SCCs with 47 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SQUARE(ok(X)) → SQUARE(X)
SQUARE(mark(X)) → SQUARE(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SQUARE(ok(X)) → SQUARE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SQUARE(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
from(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
2ndspos(x1, x2)  =  2ndspos(x1, x2)
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  x1
posrecip(x1)  =  posrecip(x1)
2ndsneg(x1, x2)  =  x2
negrecip(x1)  =  negrecip(x1)
pi(x1)  =  x1
plus(x1, x2)  =  x2
times(x1, x2)  =  times(x1, x2)
square(x1)  =  x1
proper(x1)  =  proper(x1)
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, top] > [rnil, proper1] > cons2 > [s1, 2ndspos2, negrecip1, times2] > [ok1, 0, posrecip1]
nil > [ok1, 0, posrecip1]

Status:
ok1: [1]
active1: [1]
cons2: [2,1]
s1: [1]
2ndspos2: [1,2]
0: []
rnil: []
posrecip1: [1]
negrecip1: [1]
times2: [1,2]
proper1: [1]
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SQUARE(mark(X)) → SQUARE(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SQUARE(mark(X)) → SQUARE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SQUARE(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
from(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  x1
2ndspos(x1, x2)  =  2ndspos(x1, x2)
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  rcons(x1, x2)
posrecip(x1)  =  posrecip(x1)
2ndsneg(x1, x2)  =  2ndsneg(x1, x2)
negrecip(x1)  =  x1
pi(x1)  =  pi(x1)
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  square(x1)
proper(x1)  =  x1
ok(x1)  =  x1
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > cons2 > 2ndsneg2 > 2ndspos2 > mark1 > rnil
active1 > cons2 > 2ndsneg2 > rcons2 > mark1 > rnil
active1 > [0, pi1] > 2ndspos2 > mark1 > rnil
active1 > posrecip1 > mark1 > rnil
active1 > square1 > times2 > plus2 > mark1 > rnil
nil > rnil
top > rnil

Status:
mark1: [1]
active1: [1]
cons2: [2,1]
2ndspos2: [2,1]
0: []
rnil: []
rcons2: [2,1]
posrecip1: [1]
2ndsneg2: [1,2]
pi1: [1]
plus2: [1,2]
times2: [2,1]
square1: [1]
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TIMES(X1, mark(X2)) → TIMES(X1, X2)
TIMES(mark(X1), X2) → TIMES(X1, X2)
TIMES(ok(X1), ok(X2)) → TIMES(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TIMES(mark(X1), X2) → TIMES(X1, X2)
TIMES(ok(X1), ok(X2)) → TIMES(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TIMES(x1, x2)  =  TIMES(x1)
mark(x1)  =  mark(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
from(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
2ndspos(x1, x2)  =  2ndspos(x1, x2)
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  rcons(x1, x2)
posrecip(x1)  =  posrecip(x1)
2ndsneg(x1, x2)  =  2ndsneg(x1, x2)
negrecip(x1)  =  x1
pi(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  x1
proper(x1)  =  proper(x1)
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > [s1, proper1, top] > cons2 > mark1 > [TIMES1, 0]
active1 > [s1, proper1, top] > cons2 > [ok1, nil] > [TIMES1, 0]
active1 > [s1, proper1, top] > 2ndspos2 > posrecip1 > mark1 > [TIMES1, 0]
active1 > [s1, proper1, top] > 2ndspos2 > posrecip1 > [ok1, nil] > [TIMES1, 0]
active1 > [s1, proper1, top] > 2ndspos2 > 2ndsneg2 > rnil > [ok1, nil] > [TIMES1, 0]
active1 > [s1, proper1, top] > 2ndspos2 > 2ndsneg2 > rcons2 > mark1 > [TIMES1, 0]
active1 > [s1, proper1, top] > 2ndspos2 > 2ndsneg2 > rcons2 > [ok1, nil] > [TIMES1, 0]
active1 > [s1, proper1, top] > [plus2, times2] > mark1 > [TIMES1, 0]
active1 > [s1, proper1, top] > [plus2, times2] > [ok1, nil] > [TIMES1, 0]

Status:
TIMES1: [1]
mark1: [1]
ok1: [1]
active1: [1]
cons2: [1,2]
s1: [1]
2ndspos2: [2,1]
0: []
rnil: []
rcons2: [1,2]
posrecip1: [1]
2ndsneg2: [2,1]
plus2: [2,1]
times2: [1,2]
proper1: [1]
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TIMES(X1, mark(X2)) → TIMES(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TIMES(X1, mark(X2)) → TIMES(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TIMES(x1, x2)  =  TIMES(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
from(x1)  =  from(x1)
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
2ndspos(x1, x2)  =  2ndspos(x1, x2)
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  rcons(x1, x2)
posrecip(x1)  =  posrecip(x1)
2ndsneg(x1, x2)  =  2ndsneg(x1, x2)
negrecip(x1)  =  negrecip(x1)
pi(x1)  =  pi(x1)
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  x1
proper(x1)  =  x1
ok(x1)  =  ok
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, 2ndspos2, rcons2, 2ndsneg2] > cons2 > [0, ok, top] > pi1 > [TIMES1, mark1, from1, posrecip1, negrecip1]
[active1, 2ndspos2, rcons2, 2ndsneg2] > rnil > [0, ok, top] > pi1 > [TIMES1, mark1, from1, posrecip1, negrecip1]
[active1, 2ndspos2, rcons2, 2ndsneg2] > times2 > [s1, plus2] > [0, ok, top] > pi1 > [TIMES1, mark1, from1, posrecip1, negrecip1]
nil > [0, ok, top] > pi1 > [TIMES1, mark1, from1, posrecip1, negrecip1]

Status:
TIMES1: [1]
mark1: [1]
active1: [1]
from1: [1]
cons2: [1,2]
s1: [1]
2ndspos2: [1,2]
0: []
rnil: []
rcons2: [1,2]
posrecip1: [1]
2ndsneg2: [2,1]
negrecip1: [1]
pi1: [1]
plus2: [1,2]
times2: [1,2]
ok: []
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x1)
mark(x1)  =  mark(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
from(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
2ndspos(x1, x2)  =  2ndspos(x1, x2)
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  rcons(x1, x2)
posrecip(x1)  =  posrecip(x1)
2ndsneg(x1, x2)  =  2ndsneg(x1, x2)
negrecip(x1)  =  x1
pi(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  x1
proper(x1)  =  proper(x1)
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > [s1, proper1] > cons2 > mark1 > [PLUS1, 0]
active1 > [s1, proper1] > cons2 > [ok1, nil] > [PLUS1, 0]
active1 > [s1, proper1] > 2ndspos2 > posrecip1 > mark1 > [PLUS1, 0]
active1 > [s1, proper1] > 2ndspos2 > posrecip1 > [ok1, nil] > [PLUS1, 0]
active1 > [s1, proper1] > 2ndspos2 > 2ndsneg2 > rnil > [ok1, nil] > [PLUS1, 0]
active1 > [s1, proper1] > 2ndspos2 > 2ndsneg2 > rcons2 > mark1 > [PLUS1, 0]
active1 > [s1, proper1] > 2ndspos2 > 2ndsneg2 > rcons2 > [ok1, nil] > [PLUS1, 0]
active1 > [s1, proper1] > [plus2, times2] > mark1 > [PLUS1, 0]
active1 > [s1, proper1] > [plus2, times2] > [ok1, nil] > [PLUS1, 0]
top > [PLUS1, 0]

Status:
PLUS1: [1]
mark1: [1]
ok1: [1]
active1: [1]
cons2: [1,2]
s1: [1]
2ndspos2: [2,1]
0: []
rnil: []
rcons2: [1,2]
posrecip1: [1]
2ndsneg2: [2,1]
plus2: [2,1]
times2: [1,2]
proper1: [1]
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(X1, mark(X2)) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
from(x1)  =  from(x1)
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
2ndspos(x1, x2)  =  2ndspos(x1, x2)
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  rcons(x1, x2)
posrecip(x1)  =  posrecip(x1)
2ndsneg(x1, x2)  =  2ndsneg(x1, x2)
negrecip(x1)  =  x1
pi(x1)  =  pi(x1)
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  x1
proper(x1)  =  proper(x1)
ok(x1)  =  ok
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > 0 > mark1 > [ok, nil, top]
active1 > rnil > [ok, nil, top]
active1 > [posrecip1, proper1] > [s1, plus2] > [cons2, 2ndspos2, 2ndsneg2] > mark1 > [ok, nil, top]
active1 > [posrecip1, proper1] > [s1, plus2] > rcons2 > mark1 > [ok, nil, top]
active1 > [posrecip1, proper1] > [s1, plus2] > times2 > mark1 > [ok, nil, top]
active1 > [posrecip1, proper1] > pi1 > from1 > [cons2, 2ndspos2, 2ndsneg2] > mark1 > [ok, nil, top]

Status:
mark1: [1]
active1: [1]
from1: [1]
cons2: [1,2]
s1: [1]
2ndspos2: [1,2]
0: []
rnil: []
rcons2: [2,1]
posrecip1: [1]
2ndsneg2: [1,2]
pi1: [1]
plus2: [2,1]
times2: [1,2]
proper1: [1]
ok: []
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(23) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(25) TRUE

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PI(ok(X)) → PI(X)
PI(mark(X)) → PI(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PI(ok(X)) → PI(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PI(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
from(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
2ndspos(x1, x2)  =  2ndspos(x1, x2)
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  x1
posrecip(x1)  =  posrecip(x1)
2ndsneg(x1, x2)  =  x2
negrecip(x1)  =  negrecip(x1)
pi(x1)  =  x1
plus(x1, x2)  =  x2
times(x1, x2)  =  times(x1, x2)
square(x1)  =  x1
proper(x1)  =  proper(x1)
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, top] > [rnil, proper1] > cons2 > [s1, 2ndspos2, negrecip1, times2] > [ok1, 0, posrecip1]
nil > [ok1, 0, posrecip1]

Status:
ok1: [1]
active1: [1]
cons2: [2,1]
s1: [1]
2ndspos2: [1,2]
0: []
rnil: []
posrecip1: [1]
negrecip1: [1]
times2: [1,2]
proper1: [1]
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PI(mark(X)) → PI(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PI(mark(X)) → PI(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PI(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
from(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  x1
2ndspos(x1, x2)  =  2ndspos(x1, x2)
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  rcons(x1, x2)
posrecip(x1)  =  posrecip(x1)
2ndsneg(x1, x2)  =  2ndsneg(x1, x2)
negrecip(x1)  =  x1
pi(x1)  =  pi(x1)
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  square(x1)
proper(x1)  =  x1
ok(x1)  =  x1
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > cons2 > 2ndsneg2 > 2ndspos2 > mark1 > rnil
active1 > cons2 > 2ndsneg2 > rcons2 > mark1 > rnil
active1 > [0, pi1] > 2ndspos2 > mark1 > rnil
active1 > posrecip1 > mark1 > rnil
active1 > square1 > times2 > plus2 > mark1 > rnil
nil > rnil
top > rnil

Status:
mark1: [1]
active1: [1]
cons2: [2,1]
2ndspos2: [2,1]
0: []
rnil: []
rcons2: [2,1]
posrecip1: [1]
2ndsneg2: [1,2]
pi1: [1]
plus2: [1,2]
times2: [2,1]
square1: [1]
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(30) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(32) TRUE

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

2NDSNEG(X1, mark(X2)) → 2NDSNEG(X1, X2)
2NDSNEG(mark(X1), X2) → 2NDSNEG(X1, X2)
2NDSNEG(ok(X1), ok(X2)) → 2NDSNEG(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


2NDSNEG(ok(X1), ok(X2)) → 2NDSNEG(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
2NDSNEG(x1, x2)  =  2NDSNEG(x1, x2)
mark(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
from(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
2ndspos(x1, x2)  =  x2
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  rcons(x1)
posrecip(x1)  =  x1
2ndsneg(x1, x2)  =  2ndsneg(x2)
negrecip(x1)  =  negrecip(x1)
pi(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  x1
proper(x1)  =  proper(x1)
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > [s1, 0, proper1] > cons2 > [ok1, rcons1, negrecip1]
active1 > [s1, 0, proper1] > 2ndsneg1 > rnil > [ok1, rcons1, negrecip1]
active1 > [s1, 0, proper1] > [plus2, times2] > [ok1, rcons1, negrecip1]
active1 > [s1, 0, proper1] > nil

Status:
2NDSNEG2: [2,1]
ok1: [1]
active1: [1]
cons2: [1,2]
s1: [1]
0: []
rnil: []
rcons1: [1]
2ndsneg1: [1]
negrecip1: [1]
plus2: [2,1]
times2: [1,2]
proper1: [1]
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(35) Obligation:

Q DP problem:
The TRS P consists of the following rules:

2NDSNEG(X1, mark(X2)) → 2NDSNEG(X1, X2)
2NDSNEG(mark(X1), X2) → 2NDSNEG(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


2NDSNEG(mark(X1), X2) → 2NDSNEG(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
2NDSNEG(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
from(x1)  =  from(x1)
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
2ndspos(x1, x2)  =  2ndspos(x1, x2)
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  rcons(x1, x2)
posrecip(x1)  =  posrecip(x1)
2ndsneg(x1, x2)  =  2ndsneg(x1, x2)
negrecip(x1)  =  negrecip(x1)
pi(x1)  =  pi(x1)
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  x1
proper(x1)  =  x1
ok(x1)  =  x1
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, posrecip1] > from1 > cons2 > rcons2 > [mark1, 0, pi1]
[active1, posrecip1] > from1 > cons2 > 2ndsneg2 > 2ndspos2 > [mark1, 0, pi1]
[active1, posrecip1] > from1 > cons2 > 2ndsneg2 > negrecip1 > [mark1, 0, pi1]
[active1, posrecip1] > from1 > [s1, times2] > [mark1, 0, pi1]
[active1, posrecip1] > rnil > [mark1, 0, pi1]
[active1, posrecip1] > plus2 > [s1, times2] > [mark1, 0, pi1]
nil > [mark1, 0, pi1]
top > [mark1, 0, pi1]

Status:
mark1: [1]
active1: [1]
from1: [1]
cons2: [1,2]
s1: [1]
2ndspos2: [1,2]
0: []
rnil: []
rcons2: [2,1]
posrecip1: [1]
2ndsneg2: [1,2]
negrecip1: [1]
pi1: [1]
plus2: [2,1]
times2: [1,2]
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

2NDSNEG(X1, mark(X2)) → 2NDSNEG(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


2NDSNEG(X1, mark(X2)) → 2NDSNEG(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
2NDSNEG(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
from(x1)  =  from(x1)
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
2ndspos(x1, x2)  =  2ndspos(x1, x2)
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  rcons(x1, x2)
posrecip(x1)  =  posrecip(x1)
2ndsneg(x1, x2)  =  2ndsneg(x1, x2)
negrecip(x1)  =  x1
pi(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  x1
proper(x1)  =  proper(x1)
ok(x1)  =  ok
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > [posrecip1, proper1] > [s1, plus2] > [rnil, ok] > cons2 > rcons2 > [mark1, from1, top]
active1 > [posrecip1, proper1] > [s1, plus2] > [rnil, ok] > 2ndsneg2 > 2ndspos2 > rcons2 > [mark1, from1, top]
active1 > [posrecip1, proper1] > [s1, plus2] > [rnil, ok] > times2 > [mark1, from1, top]
active1 > [posrecip1, proper1] > 0 > [mark1, from1, top]
nil > [rnil, ok] > cons2 > rcons2 > [mark1, from1, top]
nil > [rnil, ok] > 2ndsneg2 > 2ndspos2 > rcons2 > [mark1, from1, top]
nil > [rnil, ok] > times2 > [mark1, from1, top]

Status:
mark1: [1]
active1: [1]
from1: [1]
cons2: [1,2]
s1: [1]
2ndspos2: [2,1]
0: []
rnil: []
rcons2: [1,2]
posrecip1: [1]
2ndsneg2: [2,1]
plus2: [2,1]
times2: [1,2]
proper1: [1]
ok: []
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(39) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(40) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(41) TRUE

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

2NDSPOS(X1, mark(X2)) → 2NDSPOS(X1, X2)
2NDSPOS(mark(X1), X2) → 2NDSPOS(X1, X2)
2NDSPOS(ok(X1), ok(X2)) → 2NDSPOS(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


2NDSPOS(X1, mark(X2)) → 2NDSPOS(X1, X2)
2NDSPOS(mark(X1), X2) → 2NDSPOS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
2NDSPOS(x1, x2)  =  2NDSPOS(x1, x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1
active(x1)  =  active(x1)
from(x1)  =  from(x1)
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
2ndspos(x1, x2)  =  2ndspos(x1, x2)
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  rcons(x1, x2)
posrecip(x1)  =  posrecip(x1)
2ndsneg(x1, x2)  =  2ndsneg(x1, x2)
negrecip(x1)  =  negrecip(x1)
pi(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  x1
proper(x1)  =  x1
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
2NDSPOS2 > [mark1, s1, top]
active1 > from1 > [mark1, s1, top]
active1 > cons2 > 2ndspos2 > [mark1, s1, top]
active1 > rnil > [mark1, s1, top]
active1 > rcons2 > [mark1, s1, top]
active1 > posrecip1 > [mark1, s1, top]
active1 > 2ndsneg2 > 2ndspos2 > [mark1, s1, top]
active1 > negrecip1 > [mark1, s1, top]
active1 > plus2 > [mark1, s1, top]
active1 > times2 > 0 > [mark1, s1, top]
nil > [mark1, s1, top]

Status:
2NDSPOS2: [1,2]
mark1: [1]
active1: [1]
from1: [1]
cons2: [2,1]
s1: [1]
2ndspos2: [2,1]
0: []
rnil: []
rcons2: [2,1]
posrecip1: [1]
2ndsneg2: [2,1]
negrecip1: [1]
plus2: [1,2]
times2: [2,1]
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

2NDSPOS(ok(X1), ok(X2)) → 2NDSPOS(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


2NDSPOS(ok(X1), ok(X2)) → 2NDSPOS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
2NDSPOS(x1, x2)  =  2NDSPOS(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
from(x1)  =  x1
mark(x1)  =  x1
cons(x1, x2)  =  x2
s(x1)  =  x1
2ndspos(x1, x2)  =  x1
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  rcons(x2)
posrecip(x1)  =  x1
2ndsneg(x1, x2)  =  x1
negrecip(x1)  =  x1
pi(x1)  =  x1
plus(x1, x2)  =  x2
times(x1, x2)  =  x1
square(x1)  =  x1
proper(x1)  =  proper(x1)
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
0 > [2NDSPOS1, ok1, active1, rcons1] > rnil
[proper1, nil, top] > [2NDSPOS1, ok1, active1, rcons1] > rnil

Status:
2NDSPOS1: [1]
ok1: [1]
active1: [1]
0: []
rnil: []
rcons1: [1]
proper1: [1]
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(46) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(48) TRUE

(49) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(ok(X)) → FROM(X)
FROM(mark(X)) → FROM(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(50) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FROM(ok(X)) → FROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
FROM(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
from(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
2ndspos(x1, x2)  =  2ndspos(x1, x2)
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  x1
posrecip(x1)  =  posrecip(x1)
2ndsneg(x1, x2)  =  x2
negrecip(x1)  =  negrecip(x1)
pi(x1)  =  x1
plus(x1, x2)  =  x2
times(x1, x2)  =  times(x1, x2)
square(x1)  =  x1
proper(x1)  =  proper(x1)
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, top] > [rnil, proper1] > cons2 > [s1, 2ndspos2, negrecip1, times2] > [ok1, 0, posrecip1]
nil > [ok1, 0, posrecip1]

Status:
ok1: [1]
active1: [1]
cons2: [2,1]
s1: [1]
2ndspos2: [1,2]
0: []
rnil: []
posrecip1: [1]
negrecip1: [1]
times2: [1,2]
proper1: [1]
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(51) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(mark(X)) → FROM(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(52) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FROM(mark(X)) → FROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
FROM(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
from(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  x1
2ndspos(x1, x2)  =  2ndspos(x1, x2)
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  rcons(x1, x2)
posrecip(x1)  =  posrecip(x1)
2ndsneg(x1, x2)  =  2ndsneg(x1, x2)
negrecip(x1)  =  x1
pi(x1)  =  pi(x1)
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  square(x1)
proper(x1)  =  x1
ok(x1)  =  x1
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > cons2 > 2ndsneg2 > 2ndspos2 > mark1 > rnil
active1 > cons2 > 2ndsneg2 > rcons2 > mark1 > rnil
active1 > [0, pi1] > 2ndspos2 > mark1 > rnil
active1 > posrecip1 > mark1 > rnil
active1 > square1 > times2 > plus2 > mark1 > rnil
nil > rnil
top > rnil

Status:
mark1: [1]
active1: [1]
cons2: [2,1]
2ndspos2: [2,1]
0: []
rnil: []
rcons2: [2,1]
posrecip1: [1]
2ndsneg2: [1,2]
pi1: [1]
plus2: [1,2]
times2: [2,1]
square1: [1]
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(53) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(54) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(55) TRUE

(56) Obligation:

Q DP problem:
The TRS P consists of the following rules:

RCONS(X1, mark(X2)) → RCONS(X1, X2)
RCONS(mark(X1), X2) → RCONS(X1, X2)
RCONS(ok(X1), ok(X2)) → RCONS(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(57) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


RCONS(X1, mark(X2)) → RCONS(X1, X2)
RCONS(mark(X1), X2) → RCONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
RCONS(x1, x2)  =  RCONS(x1, x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1
active(x1)  =  active(x1)
from(x1)  =  from(x1)
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
2ndspos(x1, x2)  =  2ndspos(x1, x2)
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  rcons(x1, x2)
posrecip(x1)  =  posrecip(x1)
2ndsneg(x1, x2)  =  2ndsneg(x1, x2)
negrecip(x1)  =  negrecip(x1)
pi(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  x1
proper(x1)  =  x1
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
RCONS2 > [mark1, s1, top]
active1 > from1 > [mark1, s1, top]
active1 > cons2 > 2ndspos2 > [mark1, s1, top]
active1 > rnil > [mark1, s1, top]
active1 > rcons2 > [mark1, s1, top]
active1 > posrecip1 > [mark1, s1, top]
active1 > 2ndsneg2 > 2ndspos2 > [mark1, s1, top]
active1 > negrecip1 > [mark1, s1, top]
active1 > plus2 > [mark1, s1, top]
active1 > times2 > 0 > [mark1, s1, top]
nil > [mark1, s1, top]

Status:
RCONS2: [1,2]
mark1: [1]
active1: [1]
from1: [1]
cons2: [2,1]
s1: [1]
2ndspos2: [2,1]
0: []
rnil: []
rcons2: [2,1]
posrecip1: [1]
2ndsneg2: [2,1]
negrecip1: [1]
plus2: [1,2]
times2: [2,1]
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(58) Obligation:

Q DP problem:
The TRS P consists of the following rules:

RCONS(ok(X1), ok(X2)) → RCONS(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(59) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


RCONS(ok(X1), ok(X2)) → RCONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
RCONS(x1, x2)  =  RCONS(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
from(x1)  =  x1
mark(x1)  =  x1
cons(x1, x2)  =  x2
s(x1)  =  x1
2ndspos(x1, x2)  =  x1
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  rcons(x2)
posrecip(x1)  =  x1
2ndsneg(x1, x2)  =  x1
negrecip(x1)  =  x1
pi(x1)  =  x1
plus(x1, x2)  =  x2
times(x1, x2)  =  x1
square(x1)  =  x1
proper(x1)  =  proper(x1)
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
0 > [RCONS1, ok1, active1, rcons1] > rnil
[proper1, nil, top] > [RCONS1, ok1, active1, rcons1] > rnil

Status:
RCONS1: [1]
ok1: [1]
active1: [1]
0: []
rnil: []
rcons1: [1]
proper1: [1]
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(60) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(61) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(62) TRUE

(63) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(ok(X1), ok(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(64) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(ok(X1), ok(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark
active(x1)  =  active(x1)
from(x1)  =  x1
cons(x1, x2)  =  x1
s(x1)  =  x1
2ndspos(x1, x2)  =  2ndspos(x2)
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  rcons(x2)
posrecip(x1)  =  x1
2ndsneg(x1, x2)  =  x1
negrecip(x1)  =  x1
pi(x1)  =  pi(x1)
plus(x1, x2)  =  x1
times(x1, x2)  =  x2
square(x1)  =  x1
proper(x1)  =  proper(x1)
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, rnil] > [ok1, 2ndspos1, rcons1, pi1, proper1] > CONS1 > mark
[active1, rnil] > [ok1, 2ndspos1, rcons1, pi1, proper1] > 0 > mark
[active1, rnil] > [ok1, 2ndspos1, rcons1, pi1, proper1] > top > mark
nil > [ok1, 2ndspos1, rcons1, pi1, proper1] > CONS1 > mark
nil > [ok1, 2ndspos1, rcons1, pi1, proper1] > 0 > mark
nil > [ok1, 2ndspos1, rcons1, pi1, proper1] > top > mark

Status:
CONS1: [1]
ok1: [1]
mark: []
active1: [1]
2ndspos1: [1]
0: []
rnil: []
rcons1: [1]
pi1: [1]
proper1: [1]
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(65) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(66) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
from(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
2ndspos(x1, x2)  =  2ndspos(x1, x2)
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  rcons(x1, x2)
posrecip(x1)  =  x1
2ndsneg(x1, x2)  =  2ndsneg(x1, x2)
negrecip(x1)  =  x1
pi(x1)  =  pi(x1)
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  x1
proper(x1)  =  proper(x1)
ok(x1)  =  ok
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
proper1 > [active1, ok, top] > cons2 > 2ndsneg2 > 2ndspos2 > [CONS1, mark1] > rnil
proper1 > [active1, ok, top] > cons2 > 2ndsneg2 > rcons2 > [CONS1, mark1] > rnil
proper1 > [active1, ok, top] > [s1, plus2] > [0, times2] > [CONS1, mark1] > rnil
proper1 > [active1, ok, top] > [s1, plus2] > 2ndsneg2 > 2ndspos2 > [CONS1, mark1] > rnil
proper1 > [active1, ok, top] > [s1, plus2] > 2ndsneg2 > rcons2 > [CONS1, mark1] > rnil
proper1 > [active1, ok, top] > pi1 > [CONS1, mark1] > rnil
proper1 > nil > rnil

Status:
CONS1: [1]
mark1: [1]
active1: [1]
cons2: [1,2]
s1: [1]
2ndspos2: [1,2]
0: []
rnil: []
rcons2: [2,1]
2ndsneg2: [2,1]
pi1: [1]
plus2: [1,2]
times2: [1,2]
proper1: [1]
ok: []
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(67) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(68) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(69) TRUE

(70) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NEGRECIP(ok(X)) → NEGRECIP(X)
NEGRECIP(mark(X)) → NEGRECIP(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(71) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


NEGRECIP(ok(X)) → NEGRECIP(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
NEGRECIP(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
from(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
2ndspos(x1, x2)  =  2ndspos(x1, x2)
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  x1
posrecip(x1)  =  posrecip(x1)
2ndsneg(x1, x2)  =  x2
negrecip(x1)  =  negrecip(x1)
pi(x1)  =  x1
plus(x1, x2)  =  x2
times(x1, x2)  =  times(x1, x2)
square(x1)  =  x1
proper(x1)  =  proper(x1)
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, top] > [rnil, proper1] > cons2 > [s1, 2ndspos2, negrecip1, times2] > [ok1, 0, posrecip1]
nil > [ok1, 0, posrecip1]

Status:
ok1: [1]
active1: [1]
cons2: [2,1]
s1: [1]
2ndspos2: [1,2]
0: []
rnil: []
posrecip1: [1]
negrecip1: [1]
times2: [1,2]
proper1: [1]
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(72) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NEGRECIP(mark(X)) → NEGRECIP(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(73) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


NEGRECIP(mark(X)) → NEGRECIP(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
NEGRECIP(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
from(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  x1
2ndspos(x1, x2)  =  2ndspos(x1, x2)
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  rcons(x1, x2)
posrecip(x1)  =  posrecip(x1)
2ndsneg(x1, x2)  =  2ndsneg(x1, x2)
negrecip(x1)  =  x1
pi(x1)  =  pi(x1)
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  square(x1)
proper(x1)  =  x1
ok(x1)  =  x1
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > cons2 > 2ndsneg2 > 2ndspos2 > mark1 > rnil
active1 > cons2 > 2ndsneg2 > rcons2 > mark1 > rnil
active1 > [0, pi1] > 2ndspos2 > mark1 > rnil
active1 > posrecip1 > mark1 > rnil
active1 > square1 > times2 > plus2 > mark1 > rnil
nil > rnil
top > rnil

Status:
mark1: [1]
active1: [1]
cons2: [2,1]
2ndspos2: [2,1]
0: []
rnil: []
rcons2: [2,1]
posrecip1: [1]
2ndsneg2: [1,2]
pi1: [1]
plus2: [1,2]
times2: [2,1]
square1: [1]
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(74) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(75) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(76) TRUE

(77) Obligation:

Q DP problem:
The TRS P consists of the following rules:

POSRECIP(ok(X)) → POSRECIP(X)
POSRECIP(mark(X)) → POSRECIP(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(78) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


POSRECIP(ok(X)) → POSRECIP(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
POSRECIP(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
from(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
2ndspos(x1, x2)  =  2ndspos(x1, x2)
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  x1
posrecip(x1)  =  posrecip(x1)
2ndsneg(x1, x2)  =  x2
negrecip(x1)  =  negrecip(x1)
pi(x1)  =  x1
plus(x1, x2)  =  x2
times(x1, x2)  =  times(x1, x2)
square(x1)  =  x1
proper(x1)  =  proper(x1)
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, top] > [rnil, proper1] > cons2 > [s1, 2ndspos2, negrecip1, times2] > [ok1, 0, posrecip1]
nil > [ok1, 0, posrecip1]

Status:
ok1: [1]
active1: [1]
cons2: [2,1]
s1: [1]
2ndspos2: [1,2]
0: []
rnil: []
posrecip1: [1]
negrecip1: [1]
times2: [1,2]
proper1: [1]
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(79) Obligation:

Q DP problem:
The TRS P consists of the following rules:

POSRECIP(mark(X)) → POSRECIP(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(80) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


POSRECIP(mark(X)) → POSRECIP(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
POSRECIP(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
from(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  x1
2ndspos(x1, x2)  =  2ndspos(x1, x2)
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  rcons(x1, x2)
posrecip(x1)  =  posrecip(x1)
2ndsneg(x1, x2)  =  2ndsneg(x1, x2)
negrecip(x1)  =  x1
pi(x1)  =  pi(x1)
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  square(x1)
proper(x1)  =  x1
ok(x1)  =  x1
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > cons2 > 2ndsneg2 > 2ndspos2 > mark1 > rnil
active1 > cons2 > 2ndsneg2 > rcons2 > mark1 > rnil
active1 > [0, pi1] > 2ndspos2 > mark1 > rnil
active1 > posrecip1 > mark1 > rnil
active1 > square1 > times2 > plus2 > mark1 > rnil
nil > rnil
top > rnil

Status:
mark1: [1]
active1: [1]
cons2: [2,1]
2ndspos2: [2,1]
0: []
rnil: []
rcons2: [2,1]
posrecip1: [1]
2ndsneg2: [1,2]
pi1: [1]
plus2: [1,2]
times2: [2,1]
square1: [1]
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(81) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(82) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(83) TRUE

(84) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(85) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
from(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
2ndspos(x1, x2)  =  2ndspos(x1, x2)
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  x1
posrecip(x1)  =  posrecip(x1)
2ndsneg(x1, x2)  =  x2
negrecip(x1)  =  negrecip(x1)
pi(x1)  =  x1
plus(x1, x2)  =  x2
times(x1, x2)  =  times(x1, x2)
square(x1)  =  x1
proper(x1)  =  proper(x1)
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, top] > [rnil, proper1] > cons2 > [s1, 2ndspos2, negrecip1, times2] > [ok1, 0, posrecip1]
nil > [ok1, 0, posrecip1]

Status:
ok1: [1]
active1: [1]
cons2: [2,1]
s1: [1]
2ndspos2: [1,2]
0: []
rnil: []
posrecip1: [1]
negrecip1: [1]
times2: [1,2]
proper1: [1]
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(86) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(87) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
from(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  x1
2ndspos(x1, x2)  =  2ndspos(x1, x2)
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  rcons(x1, x2)
posrecip(x1)  =  posrecip(x1)
2ndsneg(x1, x2)  =  2ndsneg(x1, x2)
negrecip(x1)  =  x1
pi(x1)  =  pi(x1)
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  square(x1)
proper(x1)  =  x1
ok(x1)  =  x1
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > cons2 > 2ndsneg2 > 2ndspos2 > mark1 > rnil
active1 > cons2 > 2ndsneg2 > rcons2 > mark1 > rnil
active1 > [0, pi1] > 2ndspos2 > mark1 > rnil
active1 > posrecip1 > mark1 > rnil
active1 > square1 > times2 > plus2 > mark1 > rnil
nil > rnil
top > rnil

Status:
mark1: [1]
active1: [1]
cons2: [2,1]
2ndspos2: [2,1]
0: []
rnil: []
rcons2: [2,1]
posrecip1: [1]
2ndsneg2: [1,2]
pi1: [1]
plus2: [1,2]
times2: [2,1]
square1: [1]
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(88) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(89) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(90) TRUE

(91) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(posrecip(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(negrecip(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(rcons(X1, X2)) → PROPER(X1)
PROPER(rcons(X1, X2)) → PROPER(X2)
PROPER(from(X)) → PROPER(X)
PROPER(2ndspos(X1, X2)) → PROPER(X1)
PROPER(2ndspos(X1, X2)) → PROPER(X2)
PROPER(2ndsneg(X1, X2)) → PROPER(X1)
PROPER(2ndsneg(X1, X2)) → PROPER(X2)
PROPER(pi(X)) → PROPER(X)
PROPER(plus(X1, X2)) → PROPER(X1)
PROPER(plus(X1, X2)) → PROPER(X2)
PROPER(times(X1, X2)) → PROPER(X1)
PROPER(times(X1, X2)) → PROPER(X2)
PROPER(square(X)) → PROPER(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(92) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(s(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(rcons(X1, X2)) → PROPER(X1)
PROPER(rcons(X1, X2)) → PROPER(X2)
PROPER(2ndspos(X1, X2)) → PROPER(X1)
PROPER(2ndspos(X1, X2)) → PROPER(X2)
PROPER(2ndsneg(X1, X2)) → PROPER(X1)
PROPER(2ndsneg(X1, X2)) → PROPER(X2)
PROPER(plus(X1, X2)) → PROPER(X1)
PROPER(plus(X1, X2)) → PROPER(X2)
PROPER(times(X1, X2)) → PROPER(X1)
PROPER(times(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
posrecip(x1)  =  x1
s(x1)  =  s(x1)
negrecip(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
rcons(x1, x2)  =  rcons(x1, x2)
from(x1)  =  x1
2ndspos(x1, x2)  =  2ndspos(x1, x2)
2ndsneg(x1, x2)  =  2ndsneg(x1, x2)
pi(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  x1
active(x1)  =  x1
mark(x1)  =  mark
0  =  0
rnil  =  rnil
proper(x1)  =  proper(x1)
ok(x1)  =  ok(x1)
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
PROPER1 > [mark, 0, ok1, nil]
proper1 > cons2 > 2ndspos2 > 2ndsneg2 > [mark, 0, ok1, nil]
proper1 > rcons2 > [mark, 0, ok1, nil]
proper1 > plus2 > s1 > [mark, 0, ok1, nil]
proper1 > times2 > [mark, 0, ok1, nil]
proper1 > rnil > [mark, 0, ok1, nil]
top > [mark, 0, ok1, nil]

Status:
PROPER1: [1]
s1: [1]
cons2: [2,1]
rcons2: [2,1]
2ndspos2: [2,1]
2ndsneg2: [2,1]
plus2: [2,1]
times2: [2,1]
mark: []
0: []
rnil: []
proper1: [1]
ok1: [1]
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(93) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(posrecip(X)) → PROPER(X)
PROPER(negrecip(X)) → PROPER(X)
PROPER(from(X)) → PROPER(X)
PROPER(pi(X)) → PROPER(X)
PROPER(square(X)) → PROPER(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(94) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(posrecip(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
posrecip(x1)  =  posrecip(x1)
negrecip(x1)  =  x1
from(x1)  =  x1
pi(x1)  =  x1
square(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1
cons(x1, x2)  =  cons(x2)
s(x1)  =  x1
2ndspos(x1, x2)  =  x2
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  rcons
2ndsneg(x1, x2)  =  2ndsneg
plus(x1, x2)  =  plus(x2)
times(x1, x2)  =  times(x1)
proper(x1)  =  proper(x1)
ok(x1)  =  ok
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, rnil, rcons, 2ndsneg, times1, proper1] > posrecip1 > [plus1, ok, top] > cons1
[active1, rnil, rcons, 2ndsneg, times1, proper1] > 0 > [plus1, ok, top] > cons1
[active1, rnil, rcons, 2ndsneg, times1, proper1] > nil

Status:
PROPER1: [1]
posrecip1: [1]
active1: [1]
cons1: [1]
0: []
rnil: []
rcons: []
2ndsneg: []
plus1: [1]
times1: [1]
proper1: [1]
ok: []
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(95) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(negrecip(X)) → PROPER(X)
PROPER(from(X)) → PROPER(X)
PROPER(pi(X)) → PROPER(X)
PROPER(square(X)) → PROPER(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(96) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(from(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
negrecip(x1)  =  x1
from(x1)  =  from(x1)
pi(x1)  =  x1
square(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  mark
cons(x1, x2)  =  cons(x2)
s(x1)  =  x1
2ndspos(x1, x2)  =  2ndspos
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  rcons(x2)
posrecip(x1)  =  posrecip(x1)
2ndsneg(x1, x2)  =  2ndsneg
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1)
proper(x1)  =  x1
ok(x1)  =  x1
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
2ndsneg > [from1, active1, cons1, 2ndspos, 0] > [mark, rcons1, plus2, times1] > posrecip1 > [rnil, top]
nil > [rnil, top]

Status:
from1: [1]
active1: [1]
mark: []
cons1: [1]
2ndspos: []
0: []
rnil: []
rcons1: [1]
posrecip1: [1]
2ndsneg: []
plus2: [2,1]
times1: [1]
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(97) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(negrecip(X)) → PROPER(X)
PROPER(pi(X)) → PROPER(X)
PROPER(square(X)) → PROPER(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(98) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(square(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
negrecip(x1)  =  x1
pi(x1)  =  x1
square(x1)  =  square(x1)
active(x1)  =  active(x1)
from(x1)  =  from
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1)
s(x1)  =  x1
2ndspos(x1, x2)  =  x2
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  rcons(x1, x2)
posrecip(x1)  =  posrecip(x1)
2ndsneg(x1, x2)  =  x1
plus(x1, x2)  =  plus
times(x1, x2)  =  times
proper(x1)  =  x1
ok(x1)  =  ok
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
0 > [square1, active1, from, ok, nil] > cons1 > mark
0 > [square1, active1, from, ok, nil] > rcons2 > mark
0 > [square1, active1, from, ok, nil] > posrecip1 > mark
0 > [square1, active1, from, ok, nil] > top > mark
rnil > [square1, active1, from, ok, nil] > cons1 > mark
rnil > [square1, active1, from, ok, nil] > rcons2 > mark
rnil > [square1, active1, from, ok, nil] > posrecip1 > mark
rnil > [square1, active1, from, ok, nil] > top > mark
[plus, times] > [square1, active1, from, ok, nil] > cons1 > mark
[plus, times] > [square1, active1, from, ok, nil] > rcons2 > mark
[plus, times] > [square1, active1, from, ok, nil] > posrecip1 > mark
[plus, times] > [square1, active1, from, ok, nil] > top > mark

Status:
square1: [1]
active1: [1]
from: []
mark: []
cons1: [1]
0: []
rnil: []
rcons2: [2,1]
posrecip1: [1]
plus: []
times: []
ok: []
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(99) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(negrecip(X)) → PROPER(X)
PROPER(pi(X)) → PROPER(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(100) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(negrecip(X)) → PROPER(X)
PROPER(pi(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
negrecip(x1)  =  negrecip(x1)
pi(x1)  =  pi(x1)
active(x1)  =  active(x1)
from(x1)  =  x1
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s
2ndspos(x1, x2)  =  x1
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  rcons
posrecip(x1)  =  x1
2ndsneg(x1, x2)  =  x1
plus(x1, x2)  =  plus(x2)
times(x1, x2)  =  times(x2)
square(x1)  =  x1
proper(x1)  =  x1
ok(x1)  =  x1
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
PROPER1 > [mark, 0]
[active1, cons2, plus1] > negrecip1 > [mark, 0]
[active1, cons2, plus1] > pi1 > [mark, 0]
[active1, cons2, plus1] > s > [mark, 0]
[active1, cons2, plus1] > rnil > [mark, 0]
[active1, cons2, plus1] > rcons > [mark, 0]
[active1, cons2, plus1] > times1 > [mark, 0]
nil > [mark, 0]
top > [mark, 0]

Status:
PROPER1: [1]
negrecip1: [1]
pi1: [1]
active1: [1]
mark: []
cons2: [2,1]
s: []
0: []
rnil: []
rcons: []
plus1: [1]
times1: [1]
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(101) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(102) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(103) TRUE

(104) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(posrecip(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(negrecip(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(rcons(X1, X2)) → ACTIVE(X1)
ACTIVE(rcons(X1, X2)) → ACTIVE(X2)
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(2ndspos(X1, X2)) → ACTIVE(X1)
ACTIVE(2ndspos(X1, X2)) → ACTIVE(X2)
ACTIVE(2ndsneg(X1, X2)) → ACTIVE(X1)
ACTIVE(2ndsneg(X1, X2)) → ACTIVE(X2)
ACTIVE(pi(X)) → ACTIVE(X)
ACTIVE(plus(X1, X2)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → ACTIVE(X2)
ACTIVE(times(X1, X2)) → ACTIVE(X1)
ACTIVE(times(X1, X2)) → ACTIVE(X2)
ACTIVE(square(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(105) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(rcons(X1, X2)) → ACTIVE(X1)
ACTIVE(rcons(X1, X2)) → ACTIVE(X2)
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(2ndspos(X1, X2)) → ACTIVE(X1)
ACTIVE(2ndspos(X1, X2)) → ACTIVE(X2)
ACTIVE(2ndsneg(X1, X2)) → ACTIVE(X1)
ACTIVE(2ndsneg(X1, X2)) → ACTIVE(X2)
ACTIVE(pi(X)) → ACTIVE(X)
ACTIVE(plus(X1, X2)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → ACTIVE(X2)
ACTIVE(times(X1, X2)) → ACTIVE(X1)
ACTIVE(times(X1, X2)) → ACTIVE(X2)
ACTIVE(square(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
posrecip(x1)  =  x1
s(x1)  =  x1
negrecip(x1)  =  x1
cons(x1, x2)  =  cons(x1)
rcons(x1, x2)  =  rcons(x1, x2)
from(x1)  =  from(x1)
2ndspos(x1, x2)  =  2ndspos(x1, x2)
2ndsneg(x1, x2)  =  2ndsneg(x1, x2)
pi(x1)  =  pi(x1)
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  square(x1)
active(x1)  =  x1
mark(x1)  =  mark
0  =  0
rnil  =  rnil
proper(x1)  =  x1
ok(x1)  =  x1
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
ACTIVE1 > rnil
pi1 > [2ndspos2, 2ndsneg2] > [cons1, from1, square1, mark, 0, top] > rcons2 > rnil
times2 > plus2 > [cons1, from1, square1, mark, 0, top] > rcons2 > rnil
nil > rnil

Status:
ACTIVE1: [1]
cons1: [1]
rcons2: [1,2]
from1: [1]
2ndspos2: [1,2]
2ndsneg2: [2,1]
pi1: [1]
plus2: [2,1]
times2: [2,1]
square1: [1]
mark: []
0: []
rnil: []
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(106) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(posrecip(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(negrecip(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(107) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(negrecip(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
posrecip(x1)  =  x1
s(x1)  =  x1
negrecip(x1)  =  negrecip(x1)
active(x1)  =  active(x1)
from(x1)  =  x1
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1, x2)
2ndspos(x1, x2)  =  2ndspos(x2)
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  rcons(x1, x2)
2ndsneg(x1, x2)  =  2ndsneg
pi(x1)  =  pi(x1)
plus(x1, x2)  =  plus(x1)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  x1
proper(x1)  =  x1
ok(x1)  =  x1
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > [ACTIVE1, negrecip1] > [mark, rcons2, 2ndsneg] > [0, times2] > [cons2, top]
active1 > 2ndspos1 > [mark, rcons2, 2ndsneg] > [0, times2] > [cons2, top]
active1 > 2ndspos1 > rnil > [cons2, top]
active1 > pi1 > [mark, rcons2, 2ndsneg] > [0, times2] > [cons2, top]
active1 > plus1 > [mark, rcons2, 2ndsneg] > [0, times2] > [cons2, top]
nil > [cons2, top]

Status:
ACTIVE1: [1]
negrecip1: [1]
active1: [1]
mark: []
cons2: [2,1]
2ndspos1: [1]
0: []
rnil: []
rcons2: [1,2]
2ndsneg: []
pi1: [1]
plus1: [1]
times2: [1,2]
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(108) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(posrecip(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(109) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(posrecip(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
posrecip(x1)  =  posrecip(x1)
s(x1)  =  x1
active(x1)  =  active(x1)
from(x1)  =  x1
mark(x1)  =  x1
cons(x1, x2)  =  x1
2ndspos(x1, x2)  =  2ndspos(x2)
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  rcons
2ndsneg(x1, x2)  =  x2
negrecip(x1)  =  negrecip(x1)
pi(x1)  =  pi(x1)
plus(x1, x2)  =  x2
times(x1, x2)  =  x2
square(x1)  =  square(x1)
proper(x1)  =  x1
ok(x1)  =  x1
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, 2ndspos1] > [ACTIVE1, posrecip1] > [0, rnil, rcons, square1, top]
[active1, 2ndspos1] > negrecip1 > [0, rnil, rcons, square1, top]
[active1, 2ndspos1] > pi1 > [0, rnil, rcons, square1, top]
nil > [0, rnil, rcons, square1, top]

Status:
ACTIVE1: [1]
posrecip1: [1]
active1: [1]
2ndspos1: [1]
0: []
rnil: []
rcons: []
negrecip1: [1]
pi1: [1]
square1: [1]
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(110) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(111) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(s(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
s(x1)  =  s(x1)
active(x1)  =  active(x1)
from(x1)  =  from
mark(x1)  =  x1
cons(x1, x2)  =  cons
2ndspos(x1, x2)  =  x2
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  rcons
posrecip(x1)  =  posrecip
2ndsneg(x1, x2)  =  x2
negrecip(x1)  =  negrecip
pi(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  x2
square(x1)  =  x1
proper(x1)  =  proper(x1)
ok(x1)  =  ok
nil  =  nil
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, 0] > from > cons > [ok, top] > [ACTIVE1, s1, plus2, proper1]
[active1, 0] > rnil > [ok, top] > [ACTIVE1, s1, plus2, proper1]
[active1, 0] > rcons > [ok, top] > [ACTIVE1, s1, plus2, proper1]
[active1, 0] > posrecip > [ok, top] > [ACTIVE1, s1, plus2, proper1]
[active1, 0] > negrecip > [ok, top] > [ACTIVE1, s1, plus2, proper1]
nil > [ok, top] > [ACTIVE1, s1, plus2, proper1]

Status:
ACTIVE1: [1]
s1: [1]
active1: [1]
from: []
cons: []
0: []
rnil: []
rcons: []
posrecip: []
negrecip: []
plus2: [2,1]
proper1: [1]
ok: []
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(112) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(113) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(114) TRUE

(115) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
active(s(X)) → s(active(X))
active(posrecip(X)) → posrecip(active(X))
active(negrecip(X)) → negrecip(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(rcons(X1, X2)) → rcons(active(X1), X2)
active(rcons(X1, X2)) → rcons(X1, active(X2))
active(from(X)) → from(active(X))
active(2ndspos(X1, X2)) → 2ndspos(active(X1), X2)
active(2ndspos(X1, X2)) → 2ndspos(X1, active(X2))
active(2ndsneg(X1, X2)) → 2ndsneg(active(X1), X2)
active(2ndsneg(X1, X2)) → 2ndsneg(X1, active(X2))
active(pi(X)) → pi(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(times(X1, X2)) → times(active(X1), X2)
active(times(X1, X2)) → times(X1, active(X2))
active(square(X)) → square(active(X))
s(mark(X)) → mark(s(X))
posrecip(mark(X)) → mark(posrecip(X))
negrecip(mark(X)) → mark(negrecip(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
rcons(mark(X1), X2) → mark(rcons(X1, X2))
rcons(X1, mark(X2)) → mark(rcons(X1, X2))
from(mark(X)) → mark(from(X))
2ndspos(mark(X1), X2) → mark(2ndspos(X1, X2))
2ndspos(X1, mark(X2)) → mark(2ndspos(X1, X2))
2ndsneg(mark(X1), X2) → mark(2ndsneg(X1, X2))
2ndsneg(X1, mark(X2)) → mark(2ndsneg(X1, X2))
pi(mark(X)) → mark(pi(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
times(mark(X1), X2) → mark(times(X1, X2))
times(X1, mark(X2)) → mark(times(X1, X2))
square(mark(X)) → mark(square(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(posrecip(X)) → posrecip(proper(X))
proper(negrecip(X)) → negrecip(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(rnil) → ok(rnil)
proper(rcons(X1, X2)) → rcons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(2ndspos(X1, X2)) → 2ndspos(proper(X1), proper(X2))
proper(2ndsneg(X1, X2)) → 2ndsneg(proper(X1), proper(X2))
proper(pi(X)) → pi(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(times(X1, X2)) → times(proper(X1), proper(X2))
proper(square(X)) → square(proper(X))
s(ok(X)) → ok(s(X))
posrecip(ok(X)) → ok(posrecip(X))
negrecip(ok(X)) → ok(negrecip(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
rcons(ok(X1), ok(X2)) → ok(rcons(X1, X2))
from(ok(X)) → ok(from(X))
2ndspos(ok(X1), ok(X2)) → ok(2ndspos(X1, X2))
2ndsneg(ok(X1), ok(X2)) → ok(2ndsneg(X1, X2))
pi(ok(X)) → ok(pi(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
times(ok(X1), ok(X2)) → ok(times(X1, X2))
square(ok(X)) → ok(square(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.