(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(f(a))) → mark(f(g(f(a))))
mark(f(X)) → active(f(mark(X)))
mark(a) → active(a)
mark(g(X)) → active(g(X))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(f(a))) → MARK(f(g(f(a))))
ACTIVE(f(f(a))) → F(g(f(a)))
ACTIVE(f(f(a))) → G(f(a))
MARK(f(X)) → ACTIVE(f(mark(X)))
MARK(f(X)) → F(mark(X))
MARK(f(X)) → MARK(X)
MARK(a) → ACTIVE(a)
MARK(g(X)) → ACTIVE(g(X))
F(mark(X)) → F(X)
F(active(X)) → F(X)
G(mark(X)) → G(X)
G(active(X)) → G(X)

The TRS R consists of the following rules:

active(f(f(a))) → mark(f(g(f(a))))
mark(f(X)) → active(f(mark(X)))
mark(a) → active(a)
mark(g(X)) → active(g(X))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 4 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(active(X)) → G(X)
G(mark(X)) → G(X)

The TRS R consists of the following rules:

active(f(f(a))) → mark(f(g(f(a))))
mark(f(X)) → active(f(mark(X)))
mark(a) → active(a)
mark(g(X)) → active(g(X))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(active(X)) → G(X)
G(mark(X)) → G(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
G(x1)  =  G(x1)
active(x1)  =  active(x1)
mark(x1)  =  mark(x1)
f(x1)  =  f
a  =  a
g(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[active1, mark1, f] > a > G1

Status:
G1: multiset
active1: [1]
mark1: [1]
f: multiset
a: multiset


The following usable rules [FROCOS05] were oriented:

active(f(f(a))) → mark(f(g(f(a))))
mark(f(X)) → active(f(mark(X)))
mark(a) → active(a)
mark(g(X)) → active(g(X))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(f(a))) → mark(f(g(f(a))))
mark(f(X)) → active(f(mark(X)))
mark(a) → active(a)
mark(g(X)) → active(g(X))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(active(X)) → F(X)
F(mark(X)) → F(X)

The TRS R consists of the following rules:

active(f(f(a))) → mark(f(g(f(a))))
mark(f(X)) → active(f(mark(X)))
mark(a) → active(a)
mark(g(X)) → active(g(X))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(active(X)) → F(X)
F(mark(X)) → F(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(x1)  =  F(x1)
active(x1)  =  active(x1)
mark(x1)  =  mark(x1)
f(x1)  =  f
a  =  a
g(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[active1, mark1, f] > a > F1

Status:
F1: multiset
active1: [1]
mark1: [1]
f: multiset
a: multiset


The following usable rules [FROCOS05] were oriented:

active(f(f(a))) → mark(f(g(f(a))))
mark(f(X)) → active(f(mark(X)))
mark(a) → active(a)
mark(g(X)) → active(g(X))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(f(a))) → mark(f(g(f(a))))
mark(f(X)) → active(f(mark(X)))
mark(a) → active(a)
mark(g(X)) → active(g(X))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(f(a))) → MARK(f(g(f(a))))
MARK(f(X)) → MARK(X)
MARK(g(X)) → ACTIVE(g(X))

The TRS R consists of the following rules:

active(f(f(a))) → mark(f(g(f(a))))
mark(f(X)) → active(f(mark(X)))
mark(a) → active(a)
mark(g(X)) → active(g(X))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(g(X)) → ACTIVE(g(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK
f(x1)  =  f
ACTIVE(x1)  =  x1
mark(x1)  =  x1
a  =  a
g(x1)  =  g
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[MARK, f] > a
[MARK, f] > g

Status:
MARK: []
f: []
a: multiset
g: multiset


The following usable rules [FROCOS05] were oriented:

active(f(f(a))) → mark(f(g(f(a))))
mark(f(X)) → active(f(mark(X)))
mark(a) → active(a)
mark(g(X)) → active(g(X))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(f(a))) → MARK(f(g(f(a))))
MARK(f(X)) → MARK(X)

The TRS R consists of the following rules:

active(f(f(a))) → mark(f(g(f(a))))
mark(f(X)) → active(f(mark(X)))
mark(a) → active(a)
mark(g(X)) → active(g(X))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(f(a))) → MARK(f(g(f(a))))
MARK(f(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
f(x1)  =  f(x1)
ACTIVE(x1)  =  ACTIVE(x1)
mark(x1)  =  x1
a  =  a
g(x1)  =  g
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[a, g] > f1 > MARK1 > ACTIVE1

Status:
MARK1: multiset
f1: multiset
ACTIVE1: [1]
a: multiset
g: []


The following usable rules [FROCOS05] were oriented:

active(f(f(a))) → mark(f(g(f(a))))
mark(f(X)) → active(f(mark(X)))
mark(a) → active(a)
mark(g(X)) → active(g(X))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)

(19) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(f(a))) → mark(f(g(f(a))))
mark(f(X)) → active(f(mark(X)))
mark(a) → active(a)
mark(g(X)) → active(g(X))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(21) TRUE