(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(f(a)) → f(g(n__f(a)))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Recursive path order with status [RPO].
Precedence:
a > f1 > g1 > nf1
activate1 > f1 > g1 > nf1

Status:
f1: multiset
a: multiset
g1: multiset
nf1: multiset
activate1: multiset
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

f(f(a)) → f(g(n__f(a)))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X


(2) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(3) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(4) TRUE