(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(f(a)) → f(g(n__f(n__a)))
f(X) → n__f(X)
a → n__a
activate(n__f(X)) → f(activate(X))
activate(n__a) → a
activate(X) → X
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Recursive path order with status [RPO].
Quasi-Precedence:
[a, activate1] > [f1, g1, nf1, na]
Status:
f1: multiset
a: multiset
g1: multiset
nf1: multiset
na: multiset
activate1: multiset
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
f(f(a)) → f(g(n__f(n__a)))
a → n__a
activate(n__f(X)) → f(activate(X))
activate(n__a) → a
activate(X) → X
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(X) → n__f(X)
Q is empty.
(3) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Recursive path order with status [RPO].
Quasi-Precedence:
f1 > nf1
Status:
f1: [1]
nf1: [1]
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
f(X) → n__f(X)
(4) Obligation:
Q restricted rewrite system:
R is empty.
Q is empty.
(5) RisEmptyProof (EQUIVALENT transformation)
The TRS R is empty. Hence, termination is trivially proven.
(6) TRUE