(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__and(true, X) → mark(X)
a__and(false, Y) → false
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(add(X, Y))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
a__from(X) → cons(X, from(s(X)))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(add(X1, X2)) → a__add(mark(X1), X2)
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(from(X)) → a__from(X)
mark(true) → true
mark(false) → false
mark(0) → 0
mark(s(X)) → s(X)
mark(nil) → nil
mark(cons(X1, X2)) → cons(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
a__add(X1, X2) → add(X1, X2)
a__first(X1, X2) → first(X1, X2)
a__from(X) → from(X)

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Recursive Path Order [RPO].
Precedence:
false > [aand2, mark1, aif3, aadd2, add2, and2, if3] > true
false > [aand2, mark1, aif3, aadd2, add2, and2, if3] > [0, nil]
false > [aand2, mark1, aif3, aadd2, add2, and2, if3] > [afirst2, first2] > cons2
false > [aand2, mark1, aif3, aadd2, add2, and2, if3] > afrom1 > s1
false > [aand2, mark1, aif3, aadd2, add2, and2, if3] > afrom1 > cons2
false > [aand2, mark1, aif3, aadd2, add2, and2, if3] > afrom1 > from1

With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

a__and(true, X) → mark(X)
a__and(false, Y) → false
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(add(X, Y))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
a__from(X) → cons(X, from(s(X)))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(add(X1, X2)) → a__add(mark(X1), X2)
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(from(X)) → a__from(X)
mark(true) → true
mark(false) → false
mark(0) → 0
mark(s(X)) → s(X)
mark(nil) → nil
mark(cons(X1, X2)) → cons(X1, X2)
a__from(X) → from(X)


(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__and(X1, X2) → and(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
a__add(X1, X2) → add(X1, X2)
a__first(X1, X2) → first(X1, X2)

Q is empty.

(3) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Recursive Path Order [RPO].
Precedence:
aand2 > [and2, if3]
aif3 > [and2, if3]
aadd2 > add2 > [and2, if3]
afirst2 > first2 > [and2, if3]

With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

a__and(X1, X2) → and(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
a__add(X1, X2) → add(X1, X2)
a__first(X1, X2) → first(X1, X2)


(4) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(5) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(6) TRUE