0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 QDP
↳5 QDPOrderProof (⇔)
↳6 QDP
↳7 PisEmptyProof (⇔)
↳8 TRUE
f(n__f(n__a)) → f(n__g(n__f(n__a)))
f(X) → n__f(X)
a → n__a
g(X) → n__g(X)
activate(n__f(X)) → f(X)
activate(n__a) → a
activate(n__g(X)) → g(activate(X))
activate(X) → X
F(n__f(n__a)) → F(n__g(n__f(n__a)))
ACTIVATE(n__f(X)) → F(X)
ACTIVATE(n__a) → A
ACTIVATE(n__g(X)) → G(activate(X))
ACTIVATE(n__g(X)) → ACTIVATE(X)
f(n__f(n__a)) → f(n__g(n__f(n__a)))
f(X) → n__f(X)
a → n__a
g(X) → n__g(X)
activate(n__f(X)) → f(X)
activate(n__a) → a
activate(n__g(X)) → g(activate(X))
activate(X) → X
ACTIVATE(n__g(X)) → ACTIVATE(X)
f(n__f(n__a)) → f(n__g(n__f(n__a)))
f(X) → n__f(X)
a → n__a
g(X) → n__g(X)
activate(n__f(X)) → f(X)
activate(n__a) → a
activate(n__g(X)) → g(activate(X))
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE(n__g(X)) → ACTIVATE(X)
activate1 > f > nf
activate1 > f > na
activate1 > a > na
activate1 > g1 > ng1
ng1: multiset
f: multiset
nf: multiset
na: multiset
a: multiset
g1: multiset
activate1: [1]
f(n__f(n__a)) → f(n__g(n__f(n__a)))
f(X) → n__f(X)
a → n__a
g(X) → n__g(X)
activate(n__f(X)) → f(X)
activate(n__a) → a
activate(n__g(X)) → g(activate(X))
activate(X) → X
f(n__f(n__a)) → f(n__g(n__f(n__a)))
f(X) → n__f(X)
a → n__a
g(X) → n__g(X)
activate(n__f(X)) → f(X)
activate(n__a) → a
activate(n__g(X)) → g(activate(X))
activate(X) → X