(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__length(nil) → 0
a__length(cons(X, Y)) → s(a__length1(Y))
a__length1(X) → a__length(X)
mark(from(X)) → a__from(mark(X))
mark(length(X)) → a__length(X)
mark(length1(X)) → a__length1(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(0) → 0
a__from(X) → from(X)
a__length(X) → length(X)
a__length1(X) → length1(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__FROM(X) → MARK(X)
A__LENGTH(cons(X, Y)) → A__LENGTH1(Y)
A__LENGTH1(X) → A__LENGTH(X)
MARK(from(X)) → A__FROM(mark(X))
MARK(from(X)) → MARK(X)
MARK(length(X)) → A__LENGTH(X)
MARK(length1(X)) → A__LENGTH1(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__length(nil) → 0
a__length(cons(X, Y)) → s(a__length1(Y))
a__length1(X) → a__length(X)
mark(from(X)) → a__from(mark(X))
mark(length(X)) → a__length(X)
mark(length1(X)) → a__length1(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(0) → 0
a__from(X) → from(X)
a__length(X) → length(X)
a__length1(X) → length1(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 2 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__LENGTH1(X) → A__LENGTH(X)
A__LENGTH(cons(X, Y)) → A__LENGTH1(Y)

The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__length(nil) → 0
a__length(cons(X, Y)) → s(a__length1(Y))
a__length1(X) → a__length(X)
mark(from(X)) → a__from(mark(X))
mark(length(X)) → a__length(X)
mark(length1(X)) → a__length1(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(0) → 0
a__from(X) → from(X)
a__length(X) → length(X)
a__length1(X) → length1(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__LENGTH(cons(X, Y)) → A__LENGTH1(Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__LENGTH1(x1)  =  A__LENGTH1(x1)
A__LENGTH(x1)  =  A__LENGTH(x1)
cons(x1, x2)  =  cons(x2)
a__from(x1)  =  a__from
mark(x1)  =  mark(x1)
from(x1)  =  from
s(x1)  =  x1
a__length(x1)  =  a__length(x1)
nil  =  nil
0  =  0
a__length1(x1)  =  a__length1(x1)
length(x1)  =  x1
length1(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[ALENGTH11, ALENGTH1] > [from, alength1, 0]
mark1 > afrom > [cons1, alength11] > [from, alength1, 0]
nil > [from, alength1, 0]

Status:
ALENGTH11: [1]
ALENGTH1: [1]
cons1: [1]
afrom: []
mark1: [1]
from: []
alength1: [1]
nil: []
0: []
alength11: [1]


The following usable rules [FROCOS05] were oriented:

a__from(X) → cons(mark(X), from(s(X)))
a__length(nil) → 0
a__length(cons(X, Y)) → s(a__length1(Y))
a__length1(X) → a__length(X)
mark(from(X)) → a__from(mark(X))
mark(length(X)) → a__length(X)
mark(length1(X)) → a__length1(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(0) → 0
a__from(X) → from(X)
a__length(X) → length(X)
a__length1(X) → length1(X)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__LENGTH1(X) → A__LENGTH(X)

The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__length(nil) → 0
a__length(cons(X, Y)) → s(a__length1(Y))
a__length1(X) → a__length(X)
mark(from(X)) → a__from(mark(X))
mark(length(X)) → a__length(X)
mark(length1(X)) → a__length1(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(0) → 0
a__from(X) → from(X)
a__length(X) → length(X)
a__length1(X) → length1(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → A__FROM(mark(X))
A__FROM(X) → MARK(X)
MARK(from(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__length(nil) → 0
a__length(cons(X, Y)) → s(a__length1(Y))
a__length1(X) → a__length(X)
mark(from(X)) → a__from(mark(X))
mark(length(X)) → a__length(X)
mark(length1(X)) → a__length1(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(0) → 0
a__from(X) → from(X)
a__length(X) → length(X)
a__length1(X) → length1(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(from(X)) → A__FROM(mark(X))
A__FROM(X) → MARK(X)
MARK(from(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
from(x1)  =  from(x1)
A__FROM(x1)  =  A__FROM(x1)
mark(x1)  =  x1
cons(x1, x2)  =  x1
s(x1)  =  x1
a__from(x1)  =  a__from(x1)
a__length(x1)  =  a__length
nil  =  nil
0  =  0
a__length1(x1)  =  a__length1
length(x1)  =  length
length1(x1)  =  length1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[from1, afrom1] > [AFROM1, alength, 0, alength1, length, length1]
nil > [AFROM1, alength, 0, alength1, length, length1]

Status:
from1: [1]
AFROM1: [1]
afrom1: [1]
alength: []
nil: []
0: []
alength1: []
length: []
length1: []


The following usable rules [FROCOS05] were oriented:

a__from(X) → cons(mark(X), from(s(X)))
a__length(nil) → 0
a__length(cons(X, Y)) → s(a__length1(Y))
a__length1(X) → a__length(X)
mark(from(X)) → a__from(mark(X))
mark(length(X)) → a__length(X)
mark(length1(X)) → a__length1(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(0) → 0
a__from(X) → from(X)
a__length(X) → length(X)
a__length1(X) → length1(X)

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__length(nil) → 0
a__length(cons(X, Y)) → s(a__length1(Y))
a__length1(X) → a__length(X)
mark(from(X)) → a__from(mark(X))
mark(length(X)) → a__length(X)
mark(length1(X)) → a__length1(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(0) → 0
a__from(X) → from(X)
a__length(X) → length(X)
a__length1(X) → length1(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(cons(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
cons(x1, x2)  =  cons(x1)
s(x1)  =  x1
a__from(x1)  =  a__from(x1)
mark(x1)  =  x1
from(x1)  =  from(x1)
a__length(x1)  =  a__length
nil  =  nil
0  =  0
a__length1(x1)  =  a__length1
length(x1)  =  length
length1(x1)  =  length1

Lexicographic path order with status [LPO].
Quasi-Precedence:
MARK1 > cons1
[afrom1, from1] > cons1
nil > [alength, 0, alength1, length, length1] > cons1

Status:
MARK1: [1]
cons1: [1]
afrom1: [1]
from1: [1]
alength: []
nil: []
0: []
alength1: []
length: []
length1: []


The following usable rules [FROCOS05] were oriented:

a__from(X) → cons(mark(X), from(s(X)))
a__length(nil) → 0
a__length(cons(X, Y)) → s(a__length1(Y))
a__length1(X) → a__length(X)
mark(from(X)) → a__from(mark(X))
mark(length(X)) → a__length(X)
mark(length1(X)) → a__length1(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(0) → 0
a__from(X) → from(X)
a__length(X) → length(X)
a__length1(X) → length1(X)

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__length(nil) → 0
a__length(cons(X, Y)) → s(a__length1(Y))
a__length1(X) → a__length(X)
mark(from(X)) → a__from(mark(X))
mark(length(X)) → a__length(X)
mark(length1(X)) → a__length1(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(0) → 0
a__from(X) → from(X)
a__length(X) → length(X)
a__length1(X) → length1(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(s(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
s(x1)  =  s(x1)
a__from(x1)  =  a__from
cons(x1, x2)  =  cons(x2)
mark(x1)  =  mark(x1)
from(x1)  =  from
a__length(x1)  =  x1
nil  =  nil
0  =  0
a__length1(x1)  =  x1
length(x1)  =  x1
length1(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
nil > [afrom, mark1, 0] > [s1, cons1]
nil > [afrom, mark1, 0] > from

Status:
s1: [1]
afrom: []
cons1: [1]
mark1: [1]
from: []
nil: []
0: []


The following usable rules [FROCOS05] were oriented:

a__from(X) → cons(mark(X), from(s(X)))
a__length(nil) → 0
a__length(cons(X, Y)) → s(a__length1(Y))
a__length1(X) → a__length(X)
mark(from(X)) → a__from(mark(X))
mark(length(X)) → a__length(X)
mark(length1(X)) → a__length1(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(0) → 0
a__from(X) → from(X)
a__length(X) → length(X)
a__length1(X) → length1(X)

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__length(nil) → 0
a__length(cons(X, Y)) → s(a__length1(Y))
a__length1(X) → a__length(X)
mark(from(X)) → a__from(mark(X))
mark(length(X)) → a__length(X)
mark(length1(X)) → a__length1(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(0) → 0
a__from(X) → from(X)
a__length(X) → length(X)
a__length1(X) → length1(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE