(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
niln__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(X) → CONS(X, n__from(n__s(X)))
LENGTH(n__cons(X, Y)) → S(length1(activate(Y)))
LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH(n__cons(X, Y)) → ACTIVATE(Y)
LENGTH1(X) → LENGTH(activate(X))
LENGTH1(X) → ACTIVATE(X)
ACTIVATE(n__from(X)) → FROM(activate(X))
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__nil) → NIL
ACTIVATE(n__cons(X1, X2)) → CONS(activate(X1), X2)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
niln__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 8 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
niln__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVATE(x1)  =  ACTIVATE(x1)
n__s(x1)  =  x1
n__from(x1)  =  n__from(x1)
n__cons(x1, x2)  =  n__cons(x1, x2)
from(x1)  =  from(x1)
cons(x1, x2)  =  cons(x1, x2)
length(x1)  =  length
n__nil  =  n__nil
0  =  0
s(x1)  =  x1
length1(x1)  =  length1
activate(x1)  =  activate(x1)
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
ACTIVATE1 > nfrom1
[length, length1] > 0 > nfrom1
[nnil, activate1, nil] > from1 > [ncons2, cons2] > nfrom1
[nnil, activate1, nil] > 0 > nfrom1

Status:
ACTIVATE1: [1]
nfrom1: [1]
ncons2: [1,2]
from1: [1]
cons2: [1,2]
length: []
nnil: []
0: []
length1: []
activate1: [1]
nil: []


The following usable rules [FROCOS05] were oriented:

from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
niln__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__s(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
niln__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH1(X) → LENGTH(activate(X))

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
niln__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.