(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

minus(0, y) → 0
minus(s(x), 0) → s(x)
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

minus(0, y) → 0
minus(s(x), 0) → s(x)
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))

The set Q consists of the following terms:

minus(0, x0)
minus(s(x0), 0)
minus(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)
perfectp(0)
perfectp(s(x0))
f(0, x0, 0, x1)
f(0, x0, s(x1), x2)
f(s(x0), 0, x1, x2)
f(s(x0), s(x1), x2, x3)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), s(y)) → MINUS(x, y)
LE(s(x), s(y)) → LE(x, y)
PERFECTP(s(x)) → F(x, s(0), s(x), s(x))
F(s(x), 0, z, u) → F(x, u, minus(z, s(x)), u)
F(s(x), 0, z, u) → MINUS(z, s(x))
F(s(x), s(y), z, u) → IF(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
F(s(x), s(y), z, u) → LE(x, y)
F(s(x), s(y), z, u) → F(s(x), minus(y, x), z, u)
F(s(x), s(y), z, u) → MINUS(y, x)
F(s(x), s(y), z, u) → F(x, u, z, u)

The TRS R consists of the following rules:

minus(0, y) → 0
minus(s(x), 0) → s(x)
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))

The set Q consists of the following terms:

minus(0, x0)
minus(s(x0), 0)
minus(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)
perfectp(0)
perfectp(s(x0))
f(0, x0, 0, x1)
f(0, x0, s(x1), x2)
f(s(x0), 0, x1, x2)
f(s(x0), s(x1), x2, x3)

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 5 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)

The TRS R consists of the following rules:

minus(0, y) → 0
minus(s(x), 0) → s(x)
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))

The set Q consists of the following terms:

minus(0, x0)
minus(s(x0), 0)
minus(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)
perfectp(0)
perfectp(s(x0))
f(0, x0, 0, x1)
f(0, x0, s(x1), x2)
f(s(x0), 0, x1, x2)
f(s(x0), s(x1), x2, x3)

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LE(s(x), s(y)) → LE(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LE(x1, x2)  =  LE(x1, x2)
s(x1)  =  s(x1)
minus(x1, x2)  =  minus(x1)
0  =  0
le(x1, x2)  =  le
true  =  true
false  =  false
if(x1, x2, x3)  =  if(x1, x2, x3)
perfectp(x1)  =  perfectp(x1)
f(x1, x2, x3, x4)  =  f(x1, x2, x4)

Recursive path order with status [RPO].
Quasi-Precedence:
LE2 > [minus1, 0, le, true, false, if3]
[s1, perfectp1, f3] > [minus1, 0, le, true, false, if3]

Status:
LE2: multiset
s1: multiset
minus1: multiset
0: multiset
le: multiset
true: multiset
false: multiset
if3: multiset
perfectp1: [1]
f3: [1,3,2]


The following usable rules [FROCOS05] were oriented:

minus(0, y) → 0
minus(s(x), 0) → s(x)
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus(0, y) → 0
minus(s(x), 0) → s(x)
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))

The set Q consists of the following terms:

minus(0, x0)
minus(s(x0), 0)
minus(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)
perfectp(0)
perfectp(s(x0))
f(0, x0, 0, x1)
f(0, x0, s(x1), x2)
f(s(x0), 0, x1, x2)
f(s(x0), s(x1), x2, x3)

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), s(y)) → MINUS(x, y)

The TRS R consists of the following rules:

minus(0, y) → 0
minus(s(x), 0) → s(x)
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))

The set Q consists of the following terms:

minus(0, x0)
minus(s(x0), 0)
minus(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)
perfectp(0)
perfectp(s(x0))
f(0, x0, 0, x1)
f(0, x0, s(x1), x2)
f(s(x0), 0, x1, x2)
f(s(x0), s(x1), x2, x3)

We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MINUS(s(x), s(y)) → MINUS(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MINUS(x1, x2)  =  MINUS(x1, x2)
s(x1)  =  s(x1)
minus(x1, x2)  =  minus(x1)
0  =  0
le(x1, x2)  =  le
true  =  true
false  =  false
if(x1, x2, x3)  =  if(x1, x2, x3)
perfectp(x1)  =  perfectp(x1)
f(x1, x2, x3, x4)  =  f(x1, x2, x4)

Recursive path order with status [RPO].
Quasi-Precedence:
MINUS2 > [minus1, 0, le, true, false, if3]
[s1, perfectp1, f3] > [minus1, 0, le, true, false, if3]

Status:
MINUS2: multiset
s1: multiset
minus1: multiset
0: multiset
le: multiset
true: multiset
false: multiset
if3: multiset
perfectp1: [1]
f3: [1,3,2]


The following usable rules [FROCOS05] were oriented:

minus(0, y) → 0
minus(s(x), 0) → s(x)
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus(0, y) → 0
minus(s(x), 0) → s(x)
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))

The set Q consists of the following terms:

minus(0, x0)
minus(s(x0), 0)
minus(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)
perfectp(0)
perfectp(s(x0))
f(0, x0, 0, x1)
f(0, x0, s(x1), x2)
f(s(x0), 0, x1, x2)
f(s(x0), s(x1), x2, x3)

We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y), z, u) → F(s(x), minus(y, x), z, u)
F(s(x), 0, z, u) → F(x, u, minus(z, s(x)), u)
F(s(x), s(y), z, u) → F(x, u, z, u)

The TRS R consists of the following rules:

minus(0, y) → 0
minus(s(x), 0) → s(x)
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))

The set Q consists of the following terms:

minus(0, x0)
minus(s(x0), 0)
minus(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)
perfectp(0)
perfectp(s(x0))
f(0, x0, 0, x1)
f(0, x0, s(x1), x2)
f(s(x0), 0, x1, x2)
f(s(x0), s(x1), x2, x3)

We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(s(x), 0, z, u) → F(x, u, minus(z, s(x)), u)
F(s(x), s(y), z, u) → F(x, u, z, u)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(x1, x2, x3, x4)  =  F(x1, x3, x4)
s(x1)  =  s(x1)
minus(x1, x2)  =  x1
0  =  0
le(x1, x2)  =  le
true  =  true
false  =  false
if(x1, x2, x3)  =  if(x1, x2, x3)
perfectp(x1)  =  perfectp(x1)
f(x1, x2, x3, x4)  =  f(x1, x2, x3, x4)

Recursive path order with status [RPO].
Quasi-Precedence:
s1 > [F3, 0, le, true, false, if3, perfectp1, f4]

Status:
F3: [1,3,2]
s1: multiset
0: multiset
le: multiset
true: multiset
false: multiset
if3: [1,3,2]
perfectp1: [1]
f4: [1,3,4,2]


The following usable rules [FROCOS05] were oriented:

minus(0, y) → 0
minus(s(x), 0) → s(x)
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y), z, u) → F(s(x), minus(y, x), z, u)

The TRS R consists of the following rules:

minus(0, y) → 0
minus(s(x), 0) → s(x)
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))

The set Q consists of the following terms:

minus(0, x0)
minus(s(x0), 0)
minus(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)
perfectp(0)
perfectp(s(x0))
f(0, x0, 0, x1)
f(0, x0, s(x1), x2)
f(s(x0), 0, x1, x2)
f(s(x0), s(x1), x2, x3)

We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(s(x), s(y), z, u) → F(s(x), minus(y, x), z, u)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(x1, x2, x3, x4)  =  F(x1, x2, x4)
s(x1)  =  s(x1)
minus(x1, x2)  =  minus(x1)
0  =  0
le(x1, x2)  =  le
true  =  true
false  =  false
if(x1, x2, x3)  =  if(x1, x2, x3)
perfectp(x1)  =  perfectp(x1)
f(x1, x2, x3, x4)  =  f(x1, x2, x3, x4)

Recursive path order with status [RPO].
Quasi-Precedence:
[F3, s1, perfectp1, f4] > [minus1, 0, le, true, false, if3]

Status:
F3: [3,1,2]
s1: multiset
minus1: multiset
0: multiset
le: multiset
true: multiset
false: multiset
if3: multiset
perfectp1: [1]
f4: [1,4,2,3]


The following usable rules [FROCOS05] were oriented:

minus(0, y) → 0
minus(s(x), 0) → s(x)
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))

(21) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus(0, y) → 0
minus(s(x), 0) → s(x)
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))

The set Q consists of the following terms:

minus(0, x0)
minus(s(x0), 0)
minus(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)
perfectp(0)
perfectp(s(x0))
f(0, x0, 0, x1)
f(0, x0, s(x1), x2)
f(s(x0), 0, x1, x2)
f(s(x0), s(x1), x2, x3)

We have to consider all minimal (P,Q,R)-chains.

(22) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(23) TRUE